

PowerMan: An Out-of-Band Management Network for Data Centers Using Power Line Communication

Li Chen, Jiacheng Xia, Bairen Yi, Kai Chen SING Group Hong Kong University of Science and Technology

Managing Large Data Centers

- Data centers can contain tens of thousands of devices.
- Operations and management tasks:
 - device installation, bring-up/restart, configuration, diagnostics...

- Survive failures
- Scalable
- Can be easily deployed

Fate-sharing

- Survive failures
- Scalable
- Can be easily deployed

- Survive failures
- Scalable
- Can be easily deployed

3D-Beamforming [Sigcomm'12] Firefly [Sigcomm'14] ProjecToR [Sigcomm'16] Diamond [NSDI'16]

Flyway [Sigcomm'11] Angora [Mobicomm'14]

3D-Beamforming [Sigcomm'12] Firefly [Sigcomm'14] ProjecToR [Sigcomm'16] Diamond [NSDI'16]

Flyway [Sigcomm'11] Angora [Mobicomm'14]

- Survive failures
- Scalable
- Can be easily deployed

How to Build a Robust & Scalable System?

- How hard is it?
 - Short answer: It's hard.
 - ✓ Redundancy
 - ✓Graceful degradation
 - \checkmark Failure isolation/localization
 - ✓ Ease of repair/replacement
 - ✓...
- Whenever we build a new distributed system, we have to check all the above boxes again.
- Do we have to?

Key Insight: **Borrowing** robustness and scalability from closely-coupled systems.

Data Center Power Systems (DCPS)

Power System: The Most Robust System in Data Centers

Data Center Power Systems (DCPS)

Redundant Power Distribution Paths

Data Center Power Systems (DCPS)

Primary Power Path

PowerMan: Embedded in DCPS

Enabling Technology: Power Line Communication (PLC)

- I. Overview of Power Line Communication (PLC)
- 2. Problems of Current PLC Technology & PowerMan Design
 - Wiring \rightarrow PowerMan Power Supply Unit
 - Scalability \rightarrow PowerMan Power Distribution Unit
- 3. Prototype Implementation & Evaluations

Power Line Communication (PLC)

What is PLC?

- Power lines deliver electricity to devices.
 - AC Operating frequency: 50~60Hz.
- PLC uses existing power distribution wires to transmit high frequency data signals.
- Very challenging communication environment.
 - High attenuation.
 - Multipath fading.
 - Noise.

• • • •

PLC Applications

- PLC uses existing power distribution wires.
- PLC has been in use for many decades.
 - Industrial control.
 - Energy management.
 - Remote metering (telemetering).
 - Power line maintenance.
 - ..
- Data rate: A few Kbps.

Image from: Pavlidou, Niovi, et al. "Power line communications: state of the art and future trends." IEEE Communications magazine 41.4 (2003): 34-40.

Recent Advances: PLC for Home Networking

HomePlug Protocols provides Ethernet networking for house-hold scenarios, with up to 1200 Mbps data rate.

Problems of Current PLC Technology & PowerMan Design

Wiring Complexity

• PowerMan PSU

Limited Scalability

PowerMan PDU

Scalability

Netgear Powerline 1000 (PL1000) PLC modem

- 1000Mbps PHY data rate
- US\$ 30.3 per piece (via local home appliance vendors)
- Ix built-in power plug
- Ix RJ-45 port for Ethernet connection.
- Max power consumption: 3.73 Watts
- HomePlug AV protocols
- OFDM carrier frequency range: 2 MHz to 86 MHz

• Wiring

• Scalability

Wiring: PowerMan PSU

• Reduce wiring by combining PLC modem with existing device PSU.

For New Datacenters

PSU Design 1: Full-Integration

Wiring: PowerMan PSU

• Reduce wiring by combining PLC modem with existing device PSU.

Wiring: PowerMan PSU

• Wiring

• Scalability

Scalability of PLC networking for house-hold use is limited.

Scalability: PowerMan PDU

- How to scale with current PLC modems?
 - Form a big network with smaller ones.
 - Prevent cross-circuit interference with Low-Pass Filter.
 - Preserve cross-circuit network connectivity with a packet-forwarding gateway.

Scalability: PowerMan PDU

• Wiring

• Scalability

PowerMan PDU retains the same cable and socket count.

Interconnection & Scalability

• With reduced interference between PDU circuits, we can connect the PDUs using the same topology as the data center power system.

Borrowing Robustness from DCPS

• PowerMan leverages the redundancy in existing DCPS to achieve high robustness.

Prototype Implementation & Performance

PowerMan Prototype

• Two-Layer PowerMan Prototype

- 5 servers in each Layer-0 rack.
- 2 gateway servers in Layer-I

PowerMan Prototype

Micro-Benchmarks

Management Application Performance

OoB Network Cost Comparisons (at 16000 Servers)

Summary

- PowerMan is a robust, scalable, and easy-to-deploy management network for data centers.
 - Provides necessary bandwidth/latency for many management tasks.
 - Suitable as a **back-up/last-resort** network that can be constructed with ease and low cost.
- PowerMan employs PLC technology to *borrow* robustness and scalability from existing power systems.
- We redesign PSU and PDU to construct PowerMan with house-hold PLC devices.