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Key-value cache is 100X faster than 
database
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Key-value cache hit rate determines web 
application performance
• At 98% cache hit rate:

• +1% hit rate à 35% speedup
• Old latency: 374 µs
• New latency: 278 µs
• Facebook study [Atikoglu, Sigmetrics ’12]

• Even small hit rate improvements cause significant speedup
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Choosing the right eviction policy is hard

• Key-value caches have unique challenges
• Variable object sizes
• Variable workloads

• Prior policies are heuristics that combine recency and frequency
• No theoretical foundation
• Require hand-tuning è fragile to workload changes

• No policy works for all workloads 
• Prior system simulates many cache policy configurations to find right one per workload 

[Waldspurger, ATC ‘17]
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GOAL:
AUTO-TUNING 

EVICTION POLICY 
ACROSS WORKLOADS
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The “big picture” of key-value caching

• Goal: Maximize cache hit rate

• Constraint: Limited cache space

• Uncertainty: In practice, don’t know what is accessed when

• Difficulty: Objects have variable sizes
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Where does cache space go?
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• Let’s see what happens 
on a short trace… …  A  B  B A  C  B  A  B  D  A  B  C  D  A  B  C  B …

…

Sp
ac

e 
⇒

Time ⇒

X

B

Y

A

B BB

A

Y

X

B

A

Y

X

A A

B

Y

X

B

Y

Hit! J

C

A

X

Eviction! L



Where does cache space go?

8

• Green box = 1 hit

• Red box = 0 hits

• è Want to fit as many green 
boxes as possible

• Each box costs
resources = area

• è Cost proportional to size & 
time spent in cache
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THE KEY IDEA:
HIT DENSITY
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Our metric: Hit density (HD)

• Hit density combines hit probability and expected cost

• Least hit density (LHD) policy: Evict object with smallest hit density

• But how do we predict these quantities?

10

Hit	density =
𝑶𝒃𝒋𝒆𝒄𝒕2𝒔	𝐡𝐢𝐭	𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲

𝑂𝑏𝑗𝑒𝑐𝑡2𝑠	size×𝑶𝒃𝒋𝒆𝒄𝒕2𝒔	𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝	𝐥𝐢𝐟𝐞𝐭𝐢𝐦𝐞



Estimating hit density (HD)

• Age – # accesses since object was last requested

• Random variables
• 𝐻 – hit age (e.g., P[𝐻 = 100] is probability an object hits after 100 accesses)
• 𝐿 – lifetime (e.g., P[L = 100] is probability an object hits or is evicted after 100 accesses)

• Easy to estimate HD from these quantities:

𝐻𝐷 =
∑ P[𝐻 = 𝑎]X
YZ[

𝑆𝑖𝑧𝑒×∑ 𝑎	P[𝐿 = 𝑎]X
YZ[
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𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝	𝐥𝐢𝐟𝐞𝐭𝐢𝐦𝐞

𝐡𝐢𝐭	𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲



Example: Estimating HD from object age

• Estimate HD using conditional probability

• Monitor distribution of 𝐻	&	𝐿 online

• By definition, object of age 𝑎 wasn’t requested at age ≤ 𝑎
• è Ignore all events before 𝑎

• Hit	probability = P hit	 	age	𝑎] = ∑ i jZkl
mno
∑ i pZkl
mno

• Expected	remaining	lifetime = E 𝐿 − 𝑎 	age	𝑎] = ∑ (kxY)	i pZkl
mno
∑ i pZkl
mno

12

Candidate age 𝑎

Age

H
it 

pr
ob

ab
ili

ty



LHD by example

• Users ask repeatedly for common objects and some user-specific objects
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Common User-specific

Best hand-tuned policy for this app:
Cache common media + as much user-specific as fits

More popular Less popular



Probability of referencing object again

• Common object modeled as scan, user-specific object modeled as Zipf
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LHD by example: what’s the hit density?
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High hit probability

Older objs
closer to
peak è
expected
lifetime
decreases
with age

Hit density large & increasing

Low hit probability

Older objects are probably unpopular è
expected lifetime increases with age

Hit density small & decreasing



LHD by example: policy summary
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LHD automatically implements the 
best hand-tuned policy:

First, protect the common media, 
then cache most popular user content

Hit density large & increasing Hit density small & decreasing



Improving LHD using additional object features

• Conditional probability lets us easily add information!

• Condition 𝐻	&	𝐿	upon additional informative object features, e.g.,

• Which app requested this object?

• How long has this object taken to hit in the past?

• Features inform decisions è LHD learns the “right” policy
• No hard-coded heuristics!
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LHD gets more hits than prior policies
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Lower is 
better!



LHD gets more hits across many traces
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LHD needs much less space
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Why does LHD do better?

• Case study vs. AdaptSize [Berger et al, NSDI’17]
• AdaptSize improves LRU by bypassing most large objects
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LHD admits all objects è
more hits from big objects

LHD evicts big objects 
quickly è small objects 
survive longer è more hits Smallest objects

Biggest objects



RANKCACHE: 
TRANSLATING THEORY 

TO PRACTICE
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The problem

• Prior complex policies require complex data structures

• Synchronization è poor scalability è unacceptable request throughput

• Policies like GDSF require 𝑂(log𝑁) heaps

• Even 𝑂 1 LRU is sometimes too slow because of synchronization

• Many key-value systems approximate LRU with CLOCK / FIFO
• MemC3 [Fan, NSDI ‘13], MICA [Lim, NSDI ‘14]…

• Can LHD achieve similar request throughput to production systems?
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RankCache makes LHD fast

1. Track information approximately (eg, coarsen ages)

2. Precompute HD as table indexed by age & app id & etc

3. Randomly sample objects to find victim
• Similar to Redis, Memshare [Cidon, ATC ‘17], [Psounis, INFOCOM ’01], 

4. Tolerate rare races in eviction policy
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Making hits fast

• Metadata updated locally è no global data structure

• Same scalability benefits as CLOCK, FIFO vs. LRU
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Making evictions fast

• No global synchronization èGreat scalability!
(Even better than CLOCK/FIFO!)
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Memory management

• Many key-value caches use slab allocators (eg, 
memcached)

• Bounded fragmentation & fast

• …But no global eviction policy è poor hit ratio

• Strategy: balance victim hit density across slab 
classes
• Similar to Cliffhanger [Cidon, NSDI’16] and GD-

Wheel [Li, EuroSys’15]

• Slab classes incur negligible impact on hit rate
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CLOCK doesn’t scale when there are even a few misses! RankCache scales well with or without misses!

GDSF & LRU don’t scale!

Optimization we don’t 
have time to talk about!

Serial bottlenecks dominate è LHD best 
throughput



Related Work

• Using conditional probabilities for eviction policies in CPU caches
• EVA [Beckmann, HPCA ‘16, ’17]
• Fixed object sizes
• Different ranking function

• Prior replacement policies
• Key-value: Hyperbolic [Blankstein, ATC ‘17], Simulations [Waldspurger, ATC ‘17], 

AdaptSize [Berger, NSDI ‘17], Cliffhanger [Cidon, NSDI ‘16]…
• Non key-value: ARC [Megiddo, FAST ’03], SLRU [Karedla, Computer ‘94], LRU-K [O’Neil, 

Sigmod ‘93]…
• Heuristic based
• Require tuning or simulation
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Future directions

• Dynamic latency / bandwidth optimization
• Smoothly and dynamically switch between optimized hit ratio and byte-hit ratio

• Optimizing end-to-end response latency
• App touches multiple objects per request
• One such object evicted è others should be evicted too

• Modeling cost, e.g., to maximize write endurance in FLASH / NVM
• Predict which objects are worth writing to 2nd tier storage from memory
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THANK YOU!
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