
LHD: IMPROVING CACHE
HIT RATE BY MAXIMIZING

HIT DENSITY

USENIX NSDI 2018

Nathan Beckmann

CMU

Haoxian Chen

U. Penn

Asaf Cidon

Stanford &
Barracuda Networks

Key-value cache is 100X faster than
database

2

Web
Server

100 µs

10 ms

Key-value cache hit rate determines web
application performance
• At 98% cache hit rate:

• +1% hit rate à 35% speedup
• Old latency: 374 µs
• New latency: 278 µs
• Facebook study [Atikoglu, Sigmetrics ’12]

• Even small hit rate improvements cause significant speedup

3

Choosing the right eviction policy is hard

• Key-value caches have unique challenges
• Variable object sizes
• Variable workloads

• Prior policies are heuristics that combine recency and frequency
• No theoretical foundation
• Require hand-tuning è fragile to workload changes

• No policy works for all workloads
• Prior system simulates many cache policy configurations to find right one per workload

[Waldspurger, ATC ‘17]

4

GOAL:
AUTO-TUNING

EVICTION POLICY
ACROSS WORKLOADS

5

The “big picture” of key-value caching

• Goal: Maximize cache hit rate

• Constraint: Limited cache space

• Uncertainty: In practice, don’t know what is accessed when

• Difficulty: Objects have variable sizes

6

Where does cache space go?

7

• Let’s see what happens
on a short trace… … A B B A C B A B D A B C D A B C B …

…

Sp
ac

e
⇒

Time ⇒

X

B

Y

A

B BB

A

Y

X

B

A

Y

X

A A

B

Y

X

B

Y

Hit! J

C

A

X

Eviction! L

Where does cache space go?

8

• Green box = 1 hit

• Red box = 0 hits

• è Want to fit as many green
boxes as possible

• Each box costs
resources = area

• è Cost proportional to size &
time spent in cache

A A

… A B B A C B A B D A B C D A B C B …

A

A

B B B
C

B

D D B B

C C

…

X

B

Y

B

A

Sp
ac

e
⇒

Time ⇒

Hit! J

Eviction! L

THE KEY IDEA:
HIT DENSITY

9

Our metric: Hit density (HD)

• Hit density combines hit probability and expected cost

• Least hit density (LHD) policy: Evict object with smallest hit density

• But how do we predict these quantities?

10

Hit	density =
𝑶𝒃𝒋𝒆𝒄𝒕2𝒔	𝐡𝐢𝐭	𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲

𝑂𝑏𝑗𝑒𝑐𝑡2𝑠	size×𝑶𝒃𝒋𝒆𝒄𝒕2𝒔	𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝	𝐥𝐢𝐟𝐞𝐭𝐢𝐦𝐞

Estimating hit density (HD)

• Age – # accesses since object was last requested

• Random variables
• 𝐻 – hit age (e.g., P[𝐻 = 100] is probability an object hits after 100 accesses)
• 𝐿 – lifetime (e.g., P[L = 100] is probability an object hits or is evicted after 100 accesses)

• Easy to estimate HD from these quantities:

𝐻𝐷 =
∑ P[𝐻 = 𝑎]X
YZ[

𝑆𝑖𝑧𝑒×∑ 𝑎	P[𝐿 = 𝑎]X
YZ[

11

𝐞𝐱𝐩𝐞𝐜𝐭𝐞𝐝	𝐥𝐢𝐟𝐞𝐭𝐢𝐦𝐞

𝐡𝐢𝐭	𝐩𝐫𝐨𝐛𝐚𝐛𝐢𝐥𝐢𝐭𝐲

Example: Estimating HD from object age

• Estimate HD using conditional probability

• Monitor distribution of 𝐻	&	𝐿 online

• By definition, object of age 𝑎 wasn’t requested at age ≤ 𝑎
• è Ignore all events before 𝑎

• Hit	probability = P hit	 	age	𝑎] = ∑ i jZkl
mno
∑ i pZkl
mno

• Expected	remaining	lifetime = E 𝐿 − 𝑎 	age	𝑎] = ∑ (kxY)	i pZkl
mno
∑ i pZkl
mno

12

Candidate age 𝑎

Age

H
it

pr
ob

ab
ili

ty

LHD by example

• Users ask repeatedly for common objects and some user-specific objects

13

Common User-specific

Best hand-tuned policy for this app:
Cache common media + as much user-specific as fits

More popular Less popular

Probability of referencing object again

• Common object modeled as scan, user-specific object modeled as Zipf

14

LHD by example: what’s the hit density?

15

High hit probability

Older objs
closer to
peak è
expected
lifetime
decreases
with age

Hit density large & increasing

Low hit probability

Older objects are probably unpopular è
expected lifetime increases with age

Hit density small & decreasing

LHD by example: policy summary

16

LHD automatically implements the
best hand-tuned policy:

First, protect the common media,
then cache most popular user content

Hit density large & increasing Hit density small & decreasing

Improving LHD using additional object features

• Conditional probability lets us easily add information!

• Condition 𝐻	&	𝐿	upon additional informative object features, e.g.,

• Which app requested this object?

• How long has this object taken to hit in the past?

• Features inform decisions è LHD learns the “right” policy
• No hard-coded heuristics!

17

LHD gets more hits than prior policies

18

Lower is
better!

LHD gets more hits across many traces

19

LHD needs much less space

20

Why does LHD do better?

• Case study vs. AdaptSize [Berger et al, NSDI’17]
• AdaptSize improves LRU by bypassing most large objects

21

LHD admits all objects è
more hits from big objects

LHD evicts big objects
quickly è small objects
survive longer è more hits Smallest objects

Biggest objects

RANKCACHE:
TRANSLATING THEORY

TO PRACTICE

22

The problem

• Prior complex policies require complex data structures

• Synchronization è poor scalability è unacceptable request throughput

• Policies like GDSF require 𝑂(log𝑁) heaps

• Even 𝑂 1 LRU is sometimes too slow because of synchronization

• Many key-value systems approximate LRU with CLOCK / FIFO
• MemC3 [Fan, NSDI ‘13], MICA [Lim, NSDI ‘14]…

• Can LHD achieve similar request throughput to production systems?

23

RankCache makes LHD fast

1. Track information approximately (eg, coarsen ages)

2. Precompute HD as table indexed by age & app id & etc

3. Randomly sample objects to find victim
• Similar to Redis, Memshare [Cidon, ATC ‘17], [Psounis, INFOCOM ’01],

4. Tolerate rare races in eviction policy

24

Making hits fast

• Metadata updated locally è no global data structure

• Same scalability benefits as CLOCK, FIFO vs. LRU

25

Making evictions fast

• No global synchronization èGreat scalability!
(Even better than CLOCK/FIFO!)

26

A

B

C

D

E

F

G

Miss!

Sample
objects

A
CF

E

Lookup hit density
(pre-computed)

Evict	E

Memory management

• Many key-value caches use slab allocators (eg,
memcached)

• Bounded fragmentation & fast

• …But no global eviction policy è poor hit ratio

• Strategy: balance victim hit density across slab
classes
• Similar to Cliffhanger [Cidon, NSDI’16] and GD-

Wheel [Li, EuroSys’15]

• Slab classes incur negligible impact on hit rate

27

28

CLOCK doesn’t scale when there are even a few misses! RankCache scales well with or without misses!

GDSF & LRU don’t scale!

Optimization we don’t
have time to talk about!

Serial bottlenecks dominate è LHD best
throughput

Related Work

• Using conditional probabilities for eviction policies in CPU caches
• EVA [Beckmann, HPCA ‘16, ’17]
• Fixed object sizes
• Different ranking function

• Prior replacement policies
• Key-value: Hyperbolic [Blankstein, ATC ‘17], Simulations [Waldspurger, ATC ‘17],

AdaptSize [Berger, NSDI ‘17], Cliffhanger [Cidon, NSDI ‘16]…
• Non key-value: ARC [Megiddo, FAST ’03], SLRU [Karedla, Computer ‘94], LRU-K [O’Neil,

Sigmod ‘93]…
• Heuristic based
• Require tuning or simulation

29

Future directions

• Dynamic latency / bandwidth optimization
• Smoothly and dynamically switch between optimized hit ratio and byte-hit ratio

• Optimizing end-to-end response latency
• App touches multiple objects per request
• One such object evicted è others should be evicted too

• Modeling cost, e.g., to maximize write endurance in FLASH / NVM
• Predict which objects are worth writing to 2nd tier storage from memory

30

THANK YOU!

31

