LHD: IMPROVING CACHE
HIT RATE BY MAXIMIZING

HIT DENSITY

Nathan Beckman Asaf Cidon

CMU . Penn Stanford&
cuda Networks

USENIX NSDI 2018

Key-value cache is 100X faster than
database

Web | m
Server | = |
. MySQLlL.
\ 10 MS
’

m m m
ff emCached ff emCached ff emCached

100 S

Key-value cache hit rate determines web
application performance

« At 98% cache hit rate:

 +1% hit rate = 35% speedup
« Old latency: 374 us

« New latency: 278 us
 Facebook study [Atikoglu, Sigmetrics '12]

 Even small hit rate improvements cause significant speedup

Choosing the right eviction policy is hard

« Key-value caches have unique challenges
« Variable object sizes

» Variable workloads

« Prior policies are heuristics that combine recency and frequency
« No theoretical foundation

 Require hand-tuning =» fragile to workload changes

 No policy works for all workloads

« Prior system simulates many cache policy configurations to find right one per workload
[Waldspurger, ATC ‘17]

GOAL:
AUTO-TUNING

EVICTION POLICY
ACROSS WORKLOADS

The “big picture” of key-value caching

e Goal: Maximize cache hit rate

« Constraint: Limited cache space

 Uncertainty: In practice, don't know what is accessed when

« Difficulty: Objects have variable sizes

Where does cache space go?

Time =
e Let's see what happens

on ashort trace... .ABBACBABDABCDABCSB..

> Eviction! ®

Y

Where does cache space go?

Time =
e Green box =1 hit

. Red box = o hits .ABBACBABDABCDABCB..

« = Want to fit as many green
boxes as possible

e Each box costs
resources = area

« =» Cost proportional to size &
time spent in cache

THE KEY IDEA:

HIT DENSITY

Our metric: Hit density (HD)

« Hit density combines hit probability and expected cost

Object's hit probability

Hit d ity =
HOEIY Object's sizexObject's expected lifetime

e Least hit density (LHD) policy: Evict object with smallest hit density

« But how do we predict these quantities?

Estimating hit density (HD)

« Age — # accesses since object was last requested

e Random variables
« H—hitage (e.g., P[H = 100] is probability an object hits after 100 accesses)
o L —lifetime (e.g., P[L = 100] is probability an object hits or is evicted after 100 accesses)

« Easy to estimate HD from these quantities: hit probability

/
2q=1 P[H = a]

HD =
Sizex Yo, a P[L = a]

expected lifetime

Example: Estimating HD from object age

« Estimate HD using conditional probability
e Monitor distribution of H & L online

« By definition, object of age a wasn’t requested atage < a

« =» Ignore all events before a

Hit probability

Age /‘
o Yx=a P[H=x]

o Hit probability = P[hit | age a] = % PrL=x] Candidate age a

« Expected remaining lifetime = E|L — a| age a] = szzaogx_s[);[i]zx]

LHD by example

« Users ask repeatedly for common objects and some user-specific objects

More popular Less popular

Common User-specific

X3
x%
&

8

8

}
>
>
>
—>
<>
—>
>
>
>
>

8

8

Best hand-tuned policy for this app:
Cache common media + as much user-specific as fits

Probability of referencing object again

« Common object modeled as scan, user-specific object modeled as Zipf

I — Zipf
— Scan

>
e
O
©
O
(@)
Pt
(el
Q
O
C
Q
s
()
Y
()
a'd

Age (accesses since reference)

LHD by example: what's the hit density?

Hit density large & increasing Hit density small & decreasing

l_l_\l :

{*\ High hit probability — Zipf

— Scan

Older obj# Older objects are probably unpopular =»
closer to expected lifetime increases with age
peak >
expected
lifetime
decreases
with age

Low:hit:probability

>
-
QO
©
QO
@]
| -
(a1
Q
O
C
Q
| -
)
y—
()
a'd

—

Age (accesses since reference)

LHD by example: policy summary

Hit density large & increasing Hit density small & decreasing

LHD automatically implements the

best hand-tuned policy:
First, protect the common media,

then cache most popular user content

Hit Density

Age (accesses since reference)

Improving LHD using additional object features

 Conditional probability lets us easily add information!

 Condition H & L upon additional informative object features, e.q.,

« Which app requested this object?

« How long has this object taken to hit in the past?

e Features inform decisions =» LHD learns the “right” policy
« No hard-coded heuristics!

LHD gets more hits than prior policies

e LHD X Hyperbolic + GDSF * AdaptSize <« LRU

1Uu

+

o0}
o

o))
o
I

NN
o

/

_Loweris
better!

16 32 6|4
Size (GB)

!
O
=
(©
o
")
L
=

N
o

0

Miss Ratio (%)

Miss Ratio (%)

25

N
o

N w B wn
o o o o
T

[
o

0

!
256

.] 1
32 64

LHD gets more hits across many traces

e LHD

\\\.

5]l.2 10l24
Size (MB)

(a) Memcachier

'
128

266
Size (GB)
(d) MSR usr_1

L}
2048

1
512

X Hyperbolic + GDSF

100
80
60 -
40 -

20 -

100
80
60 -
40 -

20 -

.] 1
32 64

1
32

128

6I4
Size (GB)
(b) MSR srcl_0

* AdaptSize

128

256
Size (GB)
(e) MSR proj_1

512

< LRU

100

80 -

60 -

40 -

20 -

o -] ! I
32 64 128 192

Size (GB)
(¢) MSR srcl _1

100

80

60 -

40 -

20 -

O L] 1]] 1
3264 128 256 512
Size (GB) 19
(f) MSR proj_2

LHD needs much less space

7% |HD N Hyperbolic #=®® GDSF H=E AdaptSize === |LRU

i

I

T

1

|

[}

]

|

)

il

]

T

1

I

]

|
| 1 1
| 1 |
|) |
I | |
U 1 t

=l 17 a2a" 17 F
I |) I
I) i]
1 [} 1]
| 1 1 4
| | 4 |
J T] T
1 1 1 1
' | ! 1
' | ']
1 1 1 1
y 'y y o y

I []]]
|)
| 1 | 1
1 T 1 T
I 1 | 1
| | ' |
‘] + |
1 1 1 1
9 | i)
I] I '

cadielg D gl usr > pro\, oro) 2

w
I

=

d
5.2
Q
N &2

n
T 2
>t

+ (O

© >

O
&’u..

wer™

Why does LHD do better?

« Case study vs. AdaptSize [Berger et al, NSDI'17]
« AdaptSize improves LRU by bypassing most large objects

Biggest objects

LHD admits all objects =»
more hits from big objects

LHD evicts big objects
quickly =» small objects

survive longer =» more hits v}malle_st ObJ/e'CtS
100 10t 102 10° 10! 102
Age (M requests) Age (M requests)

(b) AdaptSize. (c) LHD.

RANKCACHE:
TRANSLATING THEORY

TO PRACTICE

The problem

« Prior complex policies require complex data structures

 Synchronization =» poor scalability =» unacceptable request throughput

« Policies like GDSF require O(log N) heaps
« Even O(1) LRU is sometimes too slow because of synchronization

« Many key-value systems approximate LRU with CLOCK /FIFO
« MemC3 [Fan, NSDI ‘13], MICA [Lim, NSDI ‘14]...

« Can LHD achieve similar request throughput to production systems?

RankCache makes LHD fast

1. Track information approximately (eg, coarsen ages)
2. Precompute HD as table indexed by age & app id & etc

3. Randomly sample objects to find victim
 Similar to Redis, Memshare [Cidon, ATC ‘17], [Psounis, INFOCOM ‘o01],

4. Tolerate rare races in eviction policy

Making hits fast

« Metadata updated locally =» no global data structure

« Same scalability benefits as CLOCK, FIFO vs. LRU

Making evictions fast

« No global synchronization =» Great scalability!
(Even better than CLOCK/FIFQO!)

Sample A :> Lookup hit density
objects Age = (pre-computed)

W3-
B

Memory management

« Many key-value caches use slab allocators (eg, —— RankCache + LHD

memcached) == RankCache + LHD + Rebalancing
== Simulation + LHD

« Bounded fragmentation & fast 100 - —

» ...But no global eviction policy =» poor hit ratio

(o8]
o
1

e Strategy: balance victim hit density across slab
classes
e Similar to Cliffhanger [Cidon, NSDI'16] and GD-
Wheel [Li, EuroSys'1g]

(o)}
o
I

i
o
I

Interval Evictions (%)
N
o

« Slab classes incur negligible impact on hit rate

o

Serial bottlenecks dominate =2 LHD best
throughput

= Random = CLOCK
— »=(RankCache+tags > Linked List (LRU)
= RankCache D o Priority Queue (GDSF) GDSF & LRU don’t scale!

Optimization we don't
have time to talk about!

Q
o
=
4
>
Q
<
o
-
o
| -
c

O L=s .
4 6 : 14 16

#Threads] #Threads .] .
CLOCK doesn’t scale when there are even a few misses! RankCache scales well with or without misses!

(a) 90% Hit ratio. (b) 100% Hit ratio. 28

Related Work

« Using conditional probabilities for eviction policies in CPU caches
« EVA [Beckmann, HPCA '16, '17]

« Fixed object sizes
« Different ranking function

« Prior replacement policies

 Key-value: Hyperbolic [Blankstein, ATC ‘17], Simulations [Waldspurger, ATC ‘17],
AdaptSize [Berger, NSDI ‘17], Cliffhanger [Cidon, NSDI '16]...

« Non key-value: ARC [Megiddo, FAST ‘03], SLRU [Karedla, Computer ‘94], LRU-K [O'Neil,
Sigmod '93]...

e Heuristic based
« Require tuning or simulation

Future directions

e Dynamic latency / bandwidth optimization
« Smoothly and dynamically switch between optimized hit ratio and byte-hit ratio

« Optimizing end-to-end response latency
« App touches multiple objects per request

« One such object evicted =» others should be evicted too

« Modeling cost, e.g., to maximize write endurance in FLASH /| NVM
e Predict which objects are worth writing to 2" tier storage from memory

THANKYOU!

