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Key-value cache is 100X faster than
database
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Key-value cache hit rate determines web
application performance

« At 98% cache hit rate:

 +1% hit rate = 35% speedup
« Old latency: 374 us

« New latency: 278 us
 Facebook study [Atikoglu, Sigmetrics '12]

 Even small hit rate improvements cause significant speedup




Choosing the right eviction policy is hard

« Key-value caches have unique challenges
« Variable object sizes

» Variable workloads

« Prior policies are heuristics that combine recency and frequency
« No theoretical foundation

 Require hand-tuning =» fragile to workload changes

 No policy works for all workloads

« Prior system simulates many cache policy configurations to find right one per workload
[Waldspurger, ATC ‘17]




GOAL:
AUTO-TUNING

EVICTION POLICY
ACROSS WORKLOADS




The “big picture” of key-value caching

e Goal: Maximize cache hit rate

« Constraint: Limited cache space

 Uncertainty: In practice, don't know what is accessed when

« Difficulty: Objects have variable sizes




Where does cache space go?

Time =
e Let's see what happens

on ashort trace... .ABBACBABDABCDABCSB..

> Eviction! ®
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Where does cache space go?

Time =
e Green box =1 hit

. Red box = o hits .ABBACBABDABCDABCB..

« = Want to fit as many green
boxes as possible

e Each box costs
resources = area

« =» Cost proportional to size &
time spent in cache




THE KEY IDEA:

HIT DENSITY




Our metric: Hit density (HD)

« Hit density combines hit probability and expected cost

Object's hit probability

Hit d ity =
HOEIY Object's sizexObject's expected lifetime

e Least hit density (LHD) policy: Evict object with smallest hit density

« But how do we predict these quantities?




Estimating hit density (HD)

« Age — # accesses since object was last requested

e Random variables
« H—hitage (e.g., P[H = 100] is probability an object hits after 100 accesses)
o L —lifetime (e.g., P[L = 100] is probability an object hits or is evicted after 100 accesses)

« Easy to estimate HD from these quantities: hit probability

/
2q=1 P[H = a]

HD =
Sizex Yo, a P[L = a]

expected lifetime




Example: Estimating HD from object age

« Estimate HD using conditional probability
e Monitor distribution of H & L online

« By definition, object of age a wasn’t requested atage < a

« =» Ignore all events before a

Hit probability

Age /‘
o Yx=a P[H=x]

o Hit probability = P[hit | age a] = % PrL=x] Candidate age a

« Expected remaining lifetime = E|L — a| age a] = szzaogx_s[);[i]zx]




LHD by example

« Users ask repeatedly for common objects and some user-specific objects

More popular Less popular

Common User-specific
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Best hand-tuned policy for this app:
Cache common media + as much user-specific as fits




Probability of referencing object again

« Common object modeled as scan, user-specific object modeled as Zipf

I — Zipf
— Scan
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LHD by example: what's the hit density?

Hit density large & increasing  Hit density small & decreasing

l_l_\l :

{*\ High hit probability — Zipf

— Scan

Older obj# Older objects are probably unpopular =»
closer to expected lifetime increases with age
peak >
expected
lifetime
decreases
with age

Low:hit:probability
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LHD by example: policy summary

Hit density large & increasing  Hit density small & decreasing

LHD automatically implements the

best hand-tuned policy:
First, protect the common media,

then cache most popular user content

Hit Density

Age (accesses since reference)




Improving LHD using additional object features

 Conditional probability lets us easily add information!

 Condition H & L upon additional informative object features, e.q.,

« Which app requested this object?

« How long has this object taken to hit in the past?

e Features inform decisions =» LHD learns the “right” policy
« No hard-coded heuristics!




LHD gets more hits than prior policies

e LHD X Hyperbolic + GDSF * AdaptSize <« LRU
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LHD gets more hits across many traces

e LHD
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LHD needs much less space

7% |HD N Hyperbolic #=®® GDSF H=E AdaptSize === |LRU
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Why does LHD do better?

« Case study vs. AdaptSize [Berger et al, NSDI'17]
« AdaptSize improves LRU by bypassing most large objects

Biggest objects

LHD admits all objects =»
more hits from big objects

LHD evicts big objects
quickly =» small objects

survive longer =» more hits v}malle_st ObJ/e'CtS
100 10t 102 10° 10! 102
Age (M requests) Age (M requests)

(b) AdaptSize. (c) LHD.




RANKCACHE:
TRANSLATING THEORY

TO PRACTICE




The problem

« Prior complex policies require complex data structures

 Synchronization =» poor scalability =» unacceptable request throughput

« Policies like GDSF require O(log N) heaps
« Even O(1) LRU is sometimes too slow because of synchronization

« Many key-value systems approximate LRU with CLOCK /FIFO
« MemC3 [Fan, NSDI ‘13], MICA [Lim, NSDI ‘14]...

« Can LHD achieve similar request throughput to production systems?




RankCache makes LHD fast

1. Track information approximately (eg, coarsen ages)
2. Precompute HD as table indexed by age & app id & etc

3. Randomly sample objects to find victim
 Similar to Redis, Memshare [Cidon, ATC ‘17], [Psounis, INFOCOM ‘o01],

4. Tolerate rare races in eviction policy




Making hits fast

« Metadata updated locally =» no global data structure

« Same scalability benefits as CLOCK, FIFO vs. LRU




Making evictions fast

« No global synchronization =» Great scalability!
(Even better than CLOCK/FIFQO!)

Sample A :> Lookup hit density
objects Age = (pre-computed)
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Memory management

« Many key-value caches use slab allocators (eg, —— RankCache + LHD

memcached) == RankCache + LHD + Rebalancing
== Simulation + LHD

« Bounded fragmentation & fast 100 - —

» ...But no global eviction policy =» poor hit ratio
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e Strategy: balance victim hit density across slab
classes
e Similar to Cliffhanger [Cidon, NSDI'16] and GD-
Wheel [Li, EuroSys'1g]
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« Slab classes incur negligible impact on hit rate
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Serial bottlenecks dominate =2 LHD best
throughput

= Random = CLOCK
— »=( RankCache+tags > Linked List (LRU)
= RankCache D o Priority Queue (GDSF) GDSF & LRU don’t scale!

Optimization we don't
have time to talk about!
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CLOCK doesn’t scale when there are even a few misses! RankCache scales well with or without misses!

(a) 90% Hit ratio. (b) 100% Hit ratio. 28




Related Work

« Using conditional probabilities for eviction policies in CPU caches
« EVA [Beckmann, HPCA '16, '17]

« Fixed object sizes
« Different ranking function

« Prior replacement policies

 Key-value: Hyperbolic [Blankstein, ATC ‘17], Simulations [Waldspurger, ATC ‘17],
AdaptSize [Berger, NSDI ‘17], Cliffhanger [Cidon, NSDI '16]...

« Non key-value: ARC [Megiddo, FAST ‘03], SLRU [Karedla, Computer ‘94], LRU-K [O'Neil,
Sigmod '93]...

e Heuristic based
« Require tuning or simulation




Future directions

e Dynamic latency / bandwidth optimization
« Smoothly and dynamically switch between optimized hit ratio and byte-hit ratio

« Optimizing end-to-end response latency
« App touches multiple objects per request

« One such object evicted =» others should be evicted too

« Modeling cost, e.g., to maximize write endurance in FLASH /| NVM
e Predict which objects are worth writing to 2" tier storage from memory
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