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The Internet is more challenging than ever

Greater bandwidth  ⇒

Large flows (e.g. video streaming) co-exist with short-flows

Wireless links with variable bandwidths are commonplace

Higher bandwidth-delay product

Lower tolerance for non-congestive loss

Greater flow-churn

Simultaneously, users are more 
sensitive to performance!

(Why are we still talking about congestion control in 2018?)



Loss-based schemes have long-standing problems

• Buffer-filling

• Vulnerable to non-congestive loss

• Loss is a coarse signal
Worsens with increasing bandwidth 
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Delay-based congestion control?

If buffer-fillers are present, 
give up on low delay

MIN: a more robust statistic for 
queuing delay

Not competitive with 
buffer-filling schemes

Delay is noisy too!

Finding true minimum RTT
is hard

Our SolutionChallenges

Empty queues periodically



Basic Goals

Avoid congestion collapse
+

Efficient and Fair allocation of bandwidth
+

Low delay



Target rate = r( = )
*+,-

Adjustable Parameter
default = 0.5

Queuing delay



Target Rate ≡ Nash Equilibrium

"#$%$#&' = log #,-# − /'log(12)
Assuming Poisson arrivals (more details in paper)

Selfishly optimize for:



Target Rate ≡ Nash Equilibrium

"#$%$#&' = log #,-# − /'log(12)
Assuming Poisson arrivals (more details in paper)

Selfishly optimize for:

Unique and Efficient



Computing the Target Rate
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Estimating queuing delay from RTT

Time

RT
T

True minimum RTT

RTT

RTTmin
RTT – RTTmin = queuing delay

Queuing delay



Estimating queuing delay from RTT

Time

RT
T

True minimum RTT

RTTmin

New flow starts here

Wrong!



Estimating queuing delay from RTT

Time

RT
T

True minimum RTT

True minimum RTT = RTTmin for new flows!



A “noisy” cellular link: Stanford to AWS
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Decoupling queuing delay from other delay variation

Time

Q
ue

ue
 le

ng
th Measured RTT

• Wireless links
• Cross traffic
• ACK compression
• Bursty transmission
• …

Positive Additive Noise!

Take Min over last 0.5 RTT of samples



A “noisy” cellular link: Stanford to AWS

Using the MIN delay estimator improves throughput from
0.5 Mbits/s to 3.9 Mbits/s
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Attaining the Target
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Calculate target rate = '( = )
*+,

If current rate  < r.: additively increase  by 0* pkts/RTT
Else:                                additively decrease by 0* pkts/RTT
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Steady-State Dynamics of Copa
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Detect buffer-filling TCP

Estimate true minimum RTT

Queue empties every 5 RTTs!    ⇒



TCP-Competitiveness



Mode switching for TCP competitiveness
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When queue doesn’t empty once every 5 RTTs, switch to TCP Competitive mode!

Best of both worlds!
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Copa gets higher throughput Cubic flows are not hurt



Limitations

• Cannot ignore low frequency noise

• Queues don’t empty periodically if:
• Propagation delay is much smaller than queuing delay
• Flows with very different propagation delays share a bottleneck queue

• Needs precise RTT measurements



Consistent Performance on Real Paths
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Satellite link: High BDP, high loss
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Fairness during flow-churn
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Summary

Network
Estimate queuing delay 

and 
compute target

Move toward target 
(AIAD-variant)

!

Outer control loop
Mode switching and
Competitive mode

A practical delay-based congestion control algorithm
https://web.mit.edu/copa
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