
Speeding up Web Page Loads
with Shandian

Sophia Wang
University of Washington

3/27/16 2

Why is page load time (PLT) slow?

3/27/16 3

<html>
<body onload=“done();”>
<link src=‘1.css’>
<script src=‘d3.js’></script>
<script src=‘2.js’></script>
<div id=“content”></div>
</body>
</html>

3/27/16 4

Elapsed Time

3/27/16 5Network Computation

html

Elapsed Time

3/27/16 6Network Computation Dependency

html

Elapsed Time

css

3/27/16 7Network Computation Dependency

html

Elapsed Time

css

js

Components	 that	
access	to	the	same	
resource	can’t	
execute	at	the	same	
time

3/27/16 8Network Computation Dependency

html

Elapsed Time

css

js

js

3/27/16 9Network Computation Dependency

html

Elapsed Time

Page load

css

js

js

A simple page incurs complex load process,
mainly due to interactions between

HTML/JS/CSS.

3/27/16 10

How much can SPDY help PLT?

3/27/16 11

html

Elapsed Time

Page load

css

js

js

3/27/16 12Network Computation Dependency

html

Elapsed Time

Page load

css

js

js

3/27/16 13Network Computation Dependency

html

Elapsed Time

Page load

css

js

js

A technique that helps one factor of PLT is
hard to help the overall PLT.

3/27/16 14

What does the simplest dependency graph
look like?

3/27/16 15Network Computation Dependency

???

Elapsed Time

Page load

css

js

js

3/27/16 16Network Computation Dependency

???

Elapsed Time

Page load

css

js

js

Time to interact

Can we make every Web page look like this?

3/27/16 17

Yes, we want to make every page like this,
automatically.

Approach: Split Browser

• Preprocess Web pages on a proxy server to
simplify the client-side page load process

3/27/16 18

Approach: Split Browser

• Preprocess Web pages on a proxy server
according to whether they are used initially

3/27/16 19

???

Elapsed Time

Page load

css

js

js

Time to interact

Load-time	state

• Used	in	an	initial	page	
load

• Display	as	fast as	
possible

Approach: Split Browser

• Preprocess Web pages on a proxy server
according to whether they are used initially

3/27/16 20

???

Elapsed Time

Page load

css

js

js

Time to interact

Post-load	state

• Not	used	in	an	initial	
page	load

• Ensure	correctness of	
future	interactions,	and	
compatibility with	
existing	technologies

Outline

• Load-time state
• Post-load state
• Deployment and implementation
• Evaluation

3/27/16 21

Outline

• Load-time state
• Post-load state
• Deployment and implementation
• Evaluation

3/27/16 22

Load-time State

• Goal
– Display as fast as possible

• Approach
– Eliminate both contents and computation of JS

and CSS on the client as many as possible

3/27/16 23

Loading load-time state

3/27/16 24

{“loadTimeState”:{
“css”:[“#main{font-size:12px;}"],
“html”:{“children”: [{
“tagName”:”body”, ...
“children”: [..., {
“tagName”:”div”,“id”:”main”,
“css”:[0]

}]}]}}

Loading load-time state

3/27/16 25

{“loadTimeState”:{
“css”:[“#main{font-size:12px;}"],
“html”:{“children”: [{
“tagName”:”body”, ...
“children”: [..., {
“tagName”:”div”,“id”:”main”,
“css”:[0]

}]}]}}

A	list	of	matched	CSS	rules

Loading load-time state

3/27/16 26

{“loadTimeState”:{
“css”:[“#main{font-size:12px;}"],
“html”:{“children”: [{
“tagName”:”body”, ...
“children”: [..., {
“tagName”:”div”,“id”:”main”,
“css”:[0]

}]}]}}

Visible	HTML	elements

Loading load-time state

3/27/16 27

{“loadTimeState”:{
“css”:[“#main{font-size:12px;}"],
“html”:{“children”: [{
“tagName”:”body”, ...
“children”: [..., {
“tagName”:”div”,“id”:”main”,
“css”:[0]

}]}]}}

Which	HTML	element	
matches	which	CSS	rules

Loading load-time state

3/27/16 28
Network Computation Dependency

???

Elapsed Time

Page load

css

js

js

Outline

• Load-time state
• Post-load state
• Deployment and implementation
• Evaluation

3/27/16 29

Post-load state

• Goals
– Correctness of future interactions

• Requirement: Post-load and load-time state contain
full state of a Web page

– Compatibility
• Requirement: Post-load state contains unmodified

JS/CSS snippets

3/27/16 30

Vanilla post-load state

• The entire Web page itself
• Pros

– Easy to ensure correctness of interactions and
compatibility with caching/CDN

• Cons
– Redundant contents and computation from load-

time state

3/27/16 31

From here, how much can we improve?

What’s equivalent to eval’ing this CSS?

3/27/16 32

#main {
font-size:12px;

}
#main {
font-size:12px;

}
#main {
font-size:12px;

}

What’s equivalent to eval’ing this CSS?

3/27/16 33

#main {
font-size:12px;

}
#main {
font-size:12px;

}
#main {
font-size:12px;

}

#main {
font-size:12px;

}

What’s equivalent to eval’ing this JS?

3/27/16 34

a += “hello world!\n”

a += “hello world!\n”

a += “hello world!\n”

What’s equivalent to eval’ing this JS?

3/27/16 35

a += “hello world!\n”

a += “hello world!\n”

a += “hello world!\n”

a += “hello world!\n”
+ ”hello world!\n”
+ ”hello world!\n”

What’s equivalent to eval’ing this JS?

3/27/16 36

function add(a, b) {
return a + b;

}
function add(a, b) {
return a + b;

}
function add(a, b) {
return a + b;

}

What’s equivalent to eval’ing this JS?

3/27/16 37

function add(a, b) {
return a + b;

}
function add(a, b) {
return a + b;

}
function add(a, b) {
return a + b;

}

function add(a, b) {
return a + b;

}

Post-load state

• Exploit the idempotency of evaluating CSS
rules and JavaScript functions/statements
– Eliminate redundant content that appeared in

load-time state
– Capture results of non-idempotent JS statements

3/27/16 38

Outline

• Load-time state
• Post-load state
• Deployment and implementation
• Evaluation

3/27/16 39

Deployment

• How to fast load on the proxy server?
– Use a beefy server
– Co-locate with Web front ends

• As part of the website: reverse proxy
• As a 3rd-party service: cloud servers

3/27/16 40

Client
Web	
server Proxy	

server
html

css

js CDNsEdge	
cache

image

video

Implementation

• Server extension
– Chrome’s content_shell
– Only handle HTML/JS/CSS

• Client browser
– Chrome
– JSON lexer, Blink, V8

3/27/16 41

Outline

• Load-time state
• Post-load state
• Deployment and implementation
• Evaluation

3/27/16 42

Experimental setup

• Server: 2.4GHz 16 core CPU, 16GB memory
• Clients

– Mobile: Nexus S, 1GHz Cortex-A8 CPU, 512MB
RAM

– Desktop: Linux VM, 2GHz CPU, 1GB memory

• Top 100 Web pages

3/27/16 43

PLT on mobile

 0

 5

 10

 15

 20

 25

 30

0 50 100

Ab
so

lu
te

 P
LT

s
(s

ec
on

ds
) Chrome

SplitBrowser

3/27/16 44

Shandian helps 60% in the median case

PLT w/ varying RTT

3/27/16 45

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

C
D

F

PLT

0, Chrome
0, SP

200ms, Chrome
200ms, SP

Unlike Chrome, Shandian is not sensitive to
RTT, due to simplified page load process

Increased	gap	
for	Chrome

Small	gap	for	
Shandian

PLT w/ varying CPU

3/27/16 46

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60

C
D

F

PLT

2GHz, Chrome
2GHz, SP

1.5GHz, Chrome
1.5GHz, SP

1GHz, Chrome
1GHz, SP

CPU has the same amount of impact for
both Chrome and Shandian

More results

• PLT breakdowns
– Time spent on proxy server is negligible
– Most time is spent on client

• Page size
– Shandian increases page size by 1% after

applying gzip compression

3/27/16 47

Difference from related work

• Amazon Silk, Opera mini
– Our client can run JavaScript
– We place proxy servers near Web servers

• Prioritizing resources (server push, Klotski)
– We remove page load dependencies on the client

3/27/16 48

Summary

• Split the page state according to whether
they are used for an initial page load

• The dependency graph until the page is
loaded is fairly simple

• Improve PLT by more than half consistently
for various settings

• Is compatible with caching/CDNs

3/27/16 49

