BeamSpy: Enabling Robust 60 GHz Links Under Blockage

Sanjib Sur

Xinyu Zhang, Parmesh Ramanathan and Ranveer Chandra

Microsoft[®] **Research**

The 1000x Challenge

1000x explosion of wireless traffic by 2020*

- Uncompressed video streaming
- Wireless data centers

- P2P snap download
- 5G mobile broadband access

* Compared to 2012: www.qualcomm.com/1000x

New Opportunity at 60 GHz

- Large unlicensed spectrum at 60 GHz millimeter-wave band
 - 70x wider bandwidth compared to typical LTE
 - 7Gbps of bit-rate
- Standardization activities
 - *IEEE 802.11ad*, IEEE 802.15.3c, ECMA-387

engadget

Gaming

TP-Link announces the 'world's first' 802.11ad router

Reviews

Public Access

Video

Pushing the limits of high-speed Wi-Fi.

Operating in the robust 60GHz band, Qualcomm® 802.11ad supports zones of ultra high-speed Wi-Fi from the boardroom, to the living room, to an airport kiosk, and beyond.

60 GHz Link Challenges

- Challenges:
 - Attenuation: 60 GHz signal strength is 625 times weaker than WiFi!

 Directionality: Narrow beamwidth -- new challenges in link establishment and maintenance

* http://www.ece.ucsd.edu/node/2812

Human Blockage on 60 GHz Beams

- Human blockage renders complete link outage
 - The body absorbs most of the 60 GHz signal energy

BeamSpy enables a robust link under such blockage

Any Issue with Naïve Beam-Searching?

 Searching overhead grows with the number of available beam directions

- There is no guarantee that beam-searching will find an effective beam direction
 - Can we predict effectiveness of beam-searching?
 - Prevention is always better than cure!

Key Insight: Beams Are Correlated!

Key Insight: Beams Are Correlated!

IX

7

L4 dB

Blockage in a beam drops performance of other beams!

0.8

<u>ц</u> 0.6

median > 0.8!

22 hoame

Why correlation exists?

Correlation Root Cause: Sparse Channel

• 60 GHz spatial channels are sparse

Sparse signal arrival paths are <u>shared</u> between beams, thus blockage causes correlated RSS drop in all beams!

Clustering Effect Across Multi Environments

Limited number of angular clusters

Sparse clustering effect is prevalent across multiple environments

Clustering Effect Across Multi Environments

Limited number of angular clusters

Angular Clusters

Sparse clustering effect is prevalent across multiple environments

BeamSpy Design

Modeling the way beams share the sparse clusters

How to measure *fine-grained* signal arrival paths given that devices can have only *coarse beam-steering*?

• Track only the *dominating directions* and *strengths*

Track only the *dominating directions* and *strengths*

• Track only the *dominating directions* and *strengths*

• Track only the *dominating directions* and *strengths*

Track only the *dominating directions* and *strengths*

• Track only the *dominating directions* and *strengths*

Predicting the Best Beam during Blockage

At deployment time

- Searching overhead grows with the number of available beam directions
- -5 Human blockage (E-10 (E-15 (E-15)) (E-10) (E-There is no optimal *trigger-time* for v-25 30 beam-searching 35 -40 100 20 40 80 120 60 n Time (ms.) There is no guarantee that beam-searching will find an
 - There is no guarantee that beam-searching will find an effective beam direction
 - Can we predict effectiveness of beam-searching?
 - Prevention is always better than cure!

 Searching overhead grows with the number of available beam directions

 Searching overhead grows with the number of available beam directions

Predicting <u>no beam</u> works during blockage does not help much!

- effective beam direction
 - Can we predict effectiveness of beam-searching?
- Prevention is always better than cure!

 Searching overhead grows with the number of available beam directions

Can we do something better?

effective beam direction

- Can we predict effectiveness of beam-searching?
- Prevention is always better than cure!

Assess a *probabilistic outage risk* of a link during placement and even before blockage occurs

In other words

What is the *likelihood* that no beam will work in a future blockage?

 Due to sparse cluster, there are discrete zones where blockage affects the link's quality

Testbed and Implementation

WiMi custom-built 60 GHz software-defined radio

- Emulated phased-array beamforming through spatial channel measurements
- Simulated 802.11ad MAC layer, replayed channel traces on *DummyNet* to emulate transport/applications

Evaluation: Micro-benchmarks

Performance Gain and Temporal Stability

- Link performance gain under blockage
- Throughput performance ~13% lower than oracle

Available Beams

Effectiveness of *Risk-Assessment* algorithm

Summary

- BeamSpy predicts best beam under human blockage by leveraging *correlation* between beams
 - Correlation occurs due to unique sparse channel and phased-array characteristics at 60 GHz
- Closely identifies *likelihood* of link outage and urges deployment towards *blockage-proof* way

Wisconsin Millimeter-wave Software Radio (WiMi) http://xyzhang.ece.wisc.edu/wimi

Thank you!