
Simplifying Software-Defined Network
Optimization Using SOL

Victor Heorhiadi Michael K. Reiter Vyas Sekar
UNC Chapel Hill UNC Chapel Hill Carnegie Mellon University

Overview: SDN

2

Control Platform (e.g., ONOS, OpenDaylight)

SDN applications

Network data Network routes

A A A A A A A

Data plane

Network Optimizations are Common

• Maxflow, Traffic engineering

• SIMPLE (SIGCOMM 2013)

• ElasticTree (NSDI 2010)

• Panopticon (Usenix ATC 2014)

• SWAN (SIGCOMM 2013)

3

Current Process

Take theory &
optimization

courses
Formulate the

problem
Solve with a

solver

Not fast
enough
• NP hard?

Develop
heuristicParse solutionDeploy

4

SDN applications

Control Platform (e.g., ONOS, OpenDaylight)

Network data Network routesOptimization layer

• No custom heuristics
• Focus on high-level

network goals
• Rapid prototyping
• App = 20 lines of

code

Our Vision

5

A A A A A A A

Challenge: Generality + Efficiency

Approach Generality Efficiency

Frameworks ✓ ✗

Custom solutions ✗ ✓

SOL ✓ ✓

SO
L

A
PI

SOL: SDN Optimization Layer

7

Logically centralized

Diverse set

SOL Optimization solver
(e.g., CPLEX)

Control Platform (e.g., ONOS, OpenDaylight)

SDN applications

Network data Network routes

A A A A A A A

Insight: Path Abstraction

• Problems are recast to be path-based

• Policies are path predicates

8

s t
1 3

2 4

Path-based Recasting: MaxFlow
Edge-based Path-based

9

𝑓"#

𝑓"$

𝑓"%

𝑓&#
𝑓&'

𝑓&$

𝑓&(
𝑓&)
𝑓&*

𝑓&+

𝑓&,

s t
1 3

s t
1

4

s t
1 3

2 4

…

𝑓: amount of flow

𝑓&# = 𝑓&' + 𝑓&(
∑ 𝑓"0%
01# = demand

Policies as Path Predicates

10

Valid paths:
• N1-N4-N5
• N1-N3-N4-N5
Invalid paths:
• N1-N3-N5

IPS

N1 N3

N4N2

N5

IPS
FW

Proxy

N1→N5
Web, 100 Mbps
FW→Proxy

Generality

Path Challenge

11

Exponential number of paths

Large optimization size

Long run time = Bad efficiency

SOL Process

12

Path generation Path
selection Optimization Rule

generation

1. Enumerate all simple paths
2. Keep valid paths

(according to a predicate)
Offline step

Pick a subset of paths

This acts as a heuristic

1. Model resource usage
and constraints

2. Solve

Use a controller to
configure data plane paths

Efficiency

Implementation

• Python library; interfaces with CPLEX solver and ONOS controller

• Prototyped applications

• MaxFlow, Traffic engineering, latency minimization

• ElasticTree (Heller et al.), Panopticon (Levin et al.), SIMPLE (Qazi et al.)

13

Example: MaxFlow

1. opt, pptc = initOptimization(topo, trafficClasses, nullPredicate, 'shortest', 5)

2. opt.allocateFlow(pptc)

3. linkcapfunc = lambda link, tc, path, resource: tc.volBytes

4. opt.capLinks(pptc, 'bandwidth', linkConstrCaps, linkcapfunc)

5. opt.maxFlow(pptc)

6. opt.solve()

14

Topology input Path generation + selection

Traffic flows
Resource
consumption

Global goal (objective function)

Example: Traffic Engineering

1. opt, pptc = initOptimization(topo, trafficClasses, nullPredicate, 'shortest', 5)

2. opt.allocateFlow(pptc)

3. linkcapfunc = lambda link, tc, path, resource: tc.volBytes

4. opt.capLinks(pptc, 'bandwidth', linkConstrCaps, linkcapfunc)

5. opt.routeAll(pptc)

6. opt.minLinkLoad('bandwidth')

7. opt.solve()

15

Route all traffic
Minimize bandwidth load

Key Questions

• Does it reduce development effort for more complex applications?

• Is it faster than the original optimization?

• Is it any worse than optimal?

16

Development effort

Application SOL lines of code Estimated improvement
ElasticTree (Heller et al.) 16 21.8×
Panoption (Levin et al.) 13 25.7×
SIMPLE (Qazi et al.) 21 18.6×

17

Optimization Runtime

18

Log Scale

Shaded: No solution
by the original within

30 minutes

Topology (number of switches)

• Orders of magnitude
faster

• Less than 1% away
from optimal

Mininet Tests

19

Setup:
• Traffic engineering

application
• Mininet + ONOS

Time to deploy

Topology (number of switches)

0→ functioning network
in 15 seconds

Summary

• Getting SDN benefits requires a lot of optimization knowledge

• SOL lowers barrier of entry for developers

• Leverages the path abstraction: generation + selection

• Efficient: deploy in seconds!

• Creates many new opportunities for future work

20

victor@cs.unc.edu https://github.com/progwriter/SOL

