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What do we need from a network LB?
● Balance load evenly

● Reliability: do not reset user connections

● Flexibility: iterate quickly

● Scalability: grow with cloud scale

● Efficiency: deliver high performance per dollar
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Limitation of hardware appliances
● Poor flexibility

● Scaling is hard

● Active-passive failover

● Expensive at scale
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Why Maglev?
● In 2008, hit wall with existing appliance solution

● Key insight: replace inflexible dedicated hardware

● With software running on existing servers

● Scalable deployment model

● Virtualize the network function

● Global control plane: SDN
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Scalability
● Huge scale in two dimensions:

● Scale out across many servers with ECMP

● Scale up to 10G line rate with kernel bypass

○ Even with very small packets; limited only by NIC

● Enables cloud-scale control plane



Scalability
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Maglev design challenges
● Reliability: keep connections alive

○ When set of Maglevs changes

○ When set of backends changes

○ Both at once with consistent hashing!

● Scaling

○ Scaling out with ECMP

○ Scaling up with kernel bypass
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Reliability when set of Maglevs changes
● Reasons this happens

○ Health change of a Maglev

○ Adding or removing Maglev capacity

● ECMP change sends most connections to different Maglev

● Can't share connection state

● Can't do round-robin

● Hashing on 5-tuple solves the problem
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Steady state
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Maglev set changes
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Reliability when set of backends changes
● Reasons this happens

○ Health change of a backend

○ Adding or removing backend capacity

● Hash space gets remapped

● Need to do connection tracking

○ Plenty of memory even in worst case



Steady state
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Backend set changes
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Both at once!
● ECMP change ruins Maglev affinity

● New Maglev does not have connection table entry

● Standard hashing: backend change ruins backend affinity

● Any backend change resets most connections



Steady state
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Everything changes

if existing connection:
use connection tracking

else:
hash2(p) % 5

hash1(p) % 3hash1(p) = 5

hash2(p) = 7 0 1 2 3

0 1 2 3 4 5
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Consistent hashing
● Consistent hashing is the answer

● Given similar inputs, will produce similar assignments

● Does not depend on backend history

● ECMP change will not cause many resets

○ Even with minor (routine) backend changes



Steady state
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hash1(p) = 5

consistent_hash(p) = 1

if existing connection:
use connection tracking

else:
consistent_hash(p)



Saved by consistent hashing

if existing connection:
use connection tracking

else:
consistent_hash(p)

hash1(p) % 3hash1(p) = 5

consistent_hash(p) = 1 0 1 2 3

0 1 2 3 4 5
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Operational wins of consistent hashing
● Need to be able to upgrade Maglev binary

○ With consistent hashing, we can just do a rolling restart

○ No need to DNS drain traffic first

○ If a backend flaps during this, minimal impact
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Consistent hashing algorithms
● Two good algorithms from '90s

● Work well with small backend sets

● With large backend sets (~1000), require huge tables

● So we invented our own

● Trades off a little consistency for very even balance



Maglev Consistent Hashing
● Hash every backend to preference list of table positions

● Prime table size P for easy computation

● Hash every backend to (offset, skip) ∈ [0, P-1] × [1, P-1]

● Each backend's i'th preference is (offset + i × skip) mod P

● Backends take turns claiming most-preferred empty bucket

32



Consistent hashing example
B0 B1 B2

Offset 3 0 3

Skip 4 2 1

B0 B1 B2

0

1

2

3

4

5

6

Permutation 
Table
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permutation[i] = (offset + i * skip) % 7
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Consistent hashing example
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Consistent hashing example
Lookup Table
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Maglev design challenges
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Scaling out with ECMP
● Use SDN switches with 256-way L3 ECMP

● Consistent hashing above makes for easy maintenance



Scale up with Kernel Bypass
● Linux kernel was a bottleneck

● Each machine needs to be fast for Maglev to be cheap

● Send/receive packets directly between user space and NIC

● Can go at 10G line rate

● Hashes packets across multiple queues

● Round robin overflow if queue fills up
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Bringing it all together

miss
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Consistent hashing evenness
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Consistent hashing consistency
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Load balancing
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Kernel bypass performance
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Conclusion
● Maglev is a fast and reliable network load balancer

● ECMP, connection tracking, and consistent hashing 

combine to scale out reliably

● Kernel bypass gives performance needed to make software 

network LB economical

● Software is a good place for stateful network functions


