
Maglev
A Fast and Reliable Network Load Balancer

Danielle E. Eisenbud, Cheng Yi, Carlo Contavalli, Cody Smith,

Roman Kononov, Eric Mann-Hielscher, Ardas Cilingiroglu,

Bin Cheyney, Wentao Shang, Jinnah Dylan Hosein



Maglev the Network Load Balancer
● What is a Network Load Balancer?

● Why Maglev?

● Maglev design

● Evaluation

● Conclusion

2



Maglev the Network Load Balancer
● What is a Network Load Balancer?

● Why Maglev?

● Maglev design

● Evaluation

● Conclusion

3



What is a network load balancer?

Google

VIP Endpoints

DNS

VIP

4



What is a network load balancer?

Network Load Balancer

5

Google



What is a network load balancer?

Network Load Balancer

6

Google



What do we need from a network LB?
● Balance load evenly

● Reliability: do not reset user connections

● Flexibility: iterate quickly

● Scalability: grow with cloud scale

● Efficiency: deliver high performance per dollar

7



Maglev the Network Load Balancer
● What is a Network Load Balancer?

● Why Maglev?

● Maglev design

● Evaluation

● Conclusion

8



Limitation of hardware appliances
● Poor flexibility

● Scaling is hard

● Active-passive failover

● Expensive at scale

9



Why Maglev?
● In 2008, hit wall with existing appliance solution

● Key insight: replace inflexible dedicated hardware

● With software running on existing servers

● Scalable deployment model

● Virtualize the network function

● Global control plane: SDN

10



Runs on existing servers

11

Maglev

Endpoints

Google



12

Scalability
● Huge scale in two dimensions:

● Scale out across many servers with ECMP

● Scale up to 10G line rate with kernel bypass

○ Even with very small packets; limited only by NIC

● Enables cloud-scale control plane



Scalability

13

Maglev

Endpoints

Google



Scalability

14
…...

…...

Maglev

Endpoints

Google



Maglev the Network Load Balancer
● What is a Network Load Balancer?

● Why Maglev?

● Maglev design

● Evaluation

● Conclusion

15



Maglev design challenges
● Reliability: keep connections alive

○ When set of Maglevs changes

○ When set of backends changes

○ Both at once with consistent hashing!

● Scaling

○ Scaling out with ECMP

○ Scaling up with kernel bypass
16



Maglev design challenges
● Reliability: keep connections alive

○ When set of Maglevs changes

○ When set of backends changes

○ Both at once with consistent hashing!

● Scaling

○ Scaling out with ECMP

○ Scaling up with kernel bypass
17



Reliability when set of Maglevs changes
● Reasons this happens

○ Health change of a Maglev

○ Adding or removing Maglev capacity

● ECMP change sends most connections to different Maglev

● Can't share connection state

● Can't do round-robin

● Hashing on 5-tuple solves the problem
18



Steady state

hash1(p) % 4

hash2(p) % 6

hash1(p) = 5

hash2(p) = 7 0 1 2 3

0 1 2 3 4 5

19



Maglev set changes

hash1(p) % 3

hash2(p) % 6

hash1(p) = 5

hash2(p) = 7 0 1 2 3

0 1 2 3 4 5

20



21

Reliability when set of backends changes
● Reasons this happens

○ Health change of a backend

○ Adding or removing backend capacity

● Hash space gets remapped

● Need to do connection tracking

○ Plenty of memory even in worst case



Steady state

hash1(p) % 4hash1(p) = 5

hash2(p) = 7 0 1 2 3

0 1 2 3 4 5

22

if existing connection:
use connection tracking

else:
hash2(p) % 6



Backend set changes

hash1(p) % 4hash1(p) = 5

hash2(p) = 7 0 1 2 3

0 1 2 3 4 5

23

if existing connection:
use connection tracking

else:
hash2(p) % 5



24

Both at once!
● ECMP change ruins Maglev affinity

● New Maglev does not have connection table entry

● Standard hashing: backend change ruins backend affinity

● Any backend change resets most connections



Steady state

hash1(p) % 4hash1(p) = 5

hash2(p) = 7 0 1 2 3

0 1 2 3 4 5

25

if existing connection:
use connection tracking

else:
hash2(p) % 6



Everything changes

if existing connection:
use connection tracking

else:
hash2(p) % 5

hash1(p) % 3hash1(p) = 5

hash2(p) = 7 0 1 2 3

0 1 2 3 4 5

26



27

Consistent hashing
● Consistent hashing is the answer

● Given similar inputs, will produce similar assignments

● Does not depend on backend history

● ECMP change will not cause many resets

○ Even with minor (routine) backend changes



Steady state

hash1(p) % 4

0 1 2 3

0 1 2 3 4 5

28

hash1(p) = 5

consistent_hash(p) = 1

if existing connection:
use connection tracking

else:
consistent_hash(p)



Saved by consistent hashing

if existing connection:
use connection tracking

else:
consistent_hash(p)

hash1(p) % 3hash1(p) = 5

consistent_hash(p) = 1 0 1 2 3

0 1 2 3 4 5

29



30

Operational wins of consistent hashing
● Need to be able to upgrade Maglev binary

○ With consistent hashing, we can just do a rolling restart

○ No need to DNS drain traffic first

○ If a backend flaps during this, minimal impact



31

Consistent hashing algorithms
● Two good algorithms from '90s

● Work well with small backend sets

● With large backend sets (~1000), require huge tables

● So we invented our own

● Trades off a little consistency for very even balance



Maglev Consistent Hashing
● Hash every backend to preference list of table positions

● Prime table size P for easy computation

● Hash every backend to (offset, skip) ∈ [0, P-1] × [1, P-1]

● Each backend's i'th preference is (offset + i × skip) mod P

● Backends take turns claiming most-preferred empty bucket

32



Consistent hashing example
B0 B1 B2

Offset 3 0 3

Skip 4 2 1

B0 B1 B2

0

1

2

3

4

5

6

Permutation 
Table

33

permutation[i] = (offset + i * skip) % 7



Consistent hashing example
B0 B1 B2

Offset 3 0 3

Skip 4 2 1

B0 B1 B2

0 3

1

2

3

4

5

6

Permutation 
Table

34

permutation[i] = (offset + i * skip) % 7



Consistent hashing example
B0 B1 B2

Offset 3 0 3

Skip 4 2 1

B0 B1 B2

0 3

1 0

2

3

4

5

6

Permutation 
Table

35

permutation[i] = (offset + i * skip) % 7



Consistent hashing example
B0 B1 B2

Offset 3 0 3

Skip 4 2 1

B0 B1 B2

0 3

1 0

2 4

3

4

5

6

permutation[i] = (offset + i * skip) % 7

Permutation 
Table

36



Consistent hashing example
B0 B1 B2

Offset 3 0 3

Skip 4 2 1

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

37

permutation[i] = (offset + i * skip) % 7



Consistent hashing example

0

1

2

3

4

5

6

Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

38



Consistent hashing example

0

1

2

3 B0

4

5

6

Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

39



Consistent hashing example

0 B1

1

2

3 B0

4

5

6

Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

40



Consistent hashing example

0 B1

1

2

3 B0

4

5

6

Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

41



Consistent hashing example

0 B1

1

2

3 B0

4 B2

5

6

Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

42



Consistent hashing example

0 B1

1

2

3 B0

4 B2

5

6

Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

43



Consistent hashing example

0 B1

1

2

3 B0

4 B2

5

6

Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

44



Consistent hashing example

0 B1

1 B0

2

3 B0

4 B2

5

6

Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

45



Consistent hashing example

0 B1

1 B0

2 B1

3 B0

4 B2

5 B2

6 B0

Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

46



Consistent hashing example
Lookup Table

B0 B1 B2

0 3 0 3

1 0 2 4

2 4 4 5

3 1 6 6

4 5 1 0

5 2 3 1

6 6 5 2

Permutation 
Table

Before After

0 B1 B0

1 B0 B0

2 B1 B0

3 B0 B0

4 B2 B2

5 B2 B2

6 B0 B2

47



Maglev design challenges
● Reliability: keep connections alive

○ When set of Maglevs changes

○ When set of backends changes

○ Both at once with consistent hashing!

● Scaling

○ Scaling out with ECMP

○ Scaling up with kernel bypass
48



49

Scaling out with ECMP
● Use SDN switches with 256-way L3 ECMP

● Consistent hashing above makes for easy maintenance



Scale up with Kernel Bypass
● Linux kernel was a bottleneck

● Each machine needs to be fast for Maglev to be cheap

● Send/receive packets directly between user space and NIC

● Can go at 10G line rate

● Hashes packets across multiple queues

● Round robin overflow if queue fills up

50



51

Bringing it all together

miss

activemark

Drop

Connection
Tracking

Consistent
Hashing

Encap

hit
miss

add

VIP
Matching

Muxing

Packet 
Rewriter

RX
Queue

TX
Queue

NIC

Steering



Maglev the Network Load Balancer
● What is a Network Load Balancer?

● Why Maglev?

● Maglev design

● Evaluation

● Conclusion

52



53

Consistent hashing evenness



54

Consistent hashing consistency



55

Load balancing



56

Kernel bypass performance



Maglev the Network Load Balancer
● What is a Network Load Balancer?

● Why Maglev?

● Maglev design

● Evaluation

● Conclusion

57



58

Conclusion
● Maglev is a fast and reliable network load balancer

● ECMP, connection tracking, and consistent hashing 

combine to scale out reliably

● Kernel bypass gives performance needed to make software 

network LB economical

● Software is a good place for stateful network functions


