Diamond: Nesting the Data Center Network with Wireless Rings in 3D Space

Yong Cui¹, **Shihan Xiao**¹, Xin Wang², Zhenjie Yang¹, Chao Zhu¹, Xiangyang Li^{1,3}, Liu Yang⁴, and Ning Ge¹ ¹Tsinghua University ²Stony Brook University ³University of Science and Technology of China ⁴Beijing University of Posts and Telecommunications

Data center networking

- Existing DCNs
 - Hierarchical layers
 - Oversubscription
 - Static & symmetrical topology
- Challenges
 - Large-scale: complex cabling & maintenance
 - Dynamic traffic (e.g., random hotspots):

One static & symmetrical topology does not fit All the traffic patterns

Dynamic topology?

Fat-tree, Mohammad Al-Fares et al. Sigcomm08

Hybrid data center networking

- *Wireless* hybrid networking: *Flyway, 3D-Beamforming, Firefly...*
 - Deploy directional wireless radios (60GHz or Free-Space-Optic (FSO)) at ToR
 - Direct rack-to-rack wireless links: built on demand to remove dynamic hotspots

Flyway [Halperin et al, Sigcomm 2011] 3D-Beamforming [Zhou et al, Sigcomm 2012] Firefly [Hamedazimi et al, Sigcomm 2014]

Hybrid data center networking

- Existing wireless hybrid DCNs
 - Wireless radios on top of rack
 - Wireless network on top of existing wired network

- Not hybrid enough!
- Rack-level reconfigurable topology to fit dynamic traffic
- Challenges
 - Limited wireless links: small rack size & dense interference
 - Easy blocking: ceiling mirror is unavailable in modern data centers
 - Difficult cooperation: the wired part is kept unchanged, hence hard to cooperate with newly added wireless part

Challenge—Limited wireless radios & links!

- Wireless on Top of Rack?
 - The top of each rack can hold at most 8 wireless radios
 - Small rack size: more radios on top of rack lead to denser interference
- Ceiling mirror?
 - Unavailable mirror: requires a restrictedheight (3 meters) clear space above rack
 - Modern data centers: complex steel structures & air conditioner plan above racks

At most 8 radios per rack if installed at ToR

Top of Rack

Top of Rack

• Motivating example

Wireless Ring: any two racks (e.g., A & B) on the ring can communicate with multi-reflections

- Scaling: add more *wireless rings*!
- But *circular reflector* board? *Hard&costly* to produce in industry...

7

- Using equal-length flat reflection board instead: easy&cheap for production
 - Racks are placed at the vertex points of regular polygon
 - *Reflection boards* are placed at the *edges* of regular polygon

• 3D Reflection in ring space: offering much higher flexibility

Deploy wireless radios on servers: Enable a large number of direct serverto-server wireless links

Side view

Challenge—Interference

• Directional wireless link (60GHz) is not "ideal thin line": it has certain *beam width* and small *side-lobes* to create interference

Solution 2—Precise reflection

• Filling the reflection board with absorbing paper, while only leaving special small holes for intended reflection points

Solution 3—Cooperation with wires (Diamond)

- Function of wireless part: handling in-ring transmissions
- Function of wired part: handling cross-ring transmissions

A real diamond...

Overview of our Diamond architecture

Solution 3—Cooperation with wires (Diamond)

- Function of wireless part: handling in-ring transmissions
- Function of wired part: handling cross-ring transmissions

Solution 3—Cooperation with wires (Diamond)

- Design of virtual switch: De-Bruijn graph
 - Without additional switches
 - Well-defined recursive routing structures
 - Logarithmic network diameter
- Design of routing
 - Hotspot traffic: designated centralized routing (centralized scheduled by controller)
 - Non-hotspot traffic: real-time hybrid routing (distributed scheduled by server)

Figure source: Wikipedia "De-Bruijn graph"

Testbed

• Single & Double reflection tests

Experiment result

- Misalignment
 - Potential beam width is about 20°: a certain degree of fault tolerance on antenna misalignment
- Reflection hole
 - Proper hole size (diameter): 10cm
 - Hole reusing: above 50% reflection holes can be reused for different wireless links (symmetrical structure)
- Multi-reflection
 - Little energy loss when using flat metal board
 - Little energy loss when using 10cm reflection holes on the flat metal board filling with absorbing paper

Simulation result

- Cover range
 - Cover 90% of ring within 3 reflections when ring number <10
 - Roughly, 1000 servers have potential 0.1 million wireless links within 2 reflections
- Different traffic patterns
 - Average 5 times higher throughout than others
 - Average 70% less flow completion time than others
- Scheduling delay
 - Greedy runs each schedule *within 100ms*, while Optimal runs with exponential time of the problem scale
- Architecture cost
 - Diamond's cost is highest (*comparable to Firefly*), while it *trades off a larger number of wireless links* than others

Topology	Cost (k\$)					Power
#	NIC	Switch	Radio	Wire	Total	(kw)
FatTree	80	2080	-	80	2240	3486
3DB	80	2080	192	80	2432	3486
FireFly	80	416	2400	16	2912	4281
Diamond	240	832	1920	32	3024	3428

Conclusion

- Diamond can bring significant performance benefits for topologyreconfigurable DCNs
 - No need of the restricted-height clear ceiling space/ceiling mirror
 - Enable a large number of highly-flexible server-level wireless links
 - Better cooperation between wireless and wired transmission components
- Future vision: running FSO (Free-Space-Optics) in Diamond
 - Potential Tbps bandwidth
 - Nearly zero beam width: little interference
- Try it out for fun:
- @ <u>http://www.4over6.edu.cn/cuiyong/app/diamond.apk</u>

Thank You !