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Trend : Popularity of Network Function
Virtualization (NFV)

* NFV : Commodity hardware appliances = Software layer

- Virtualizes entire class of network functions
- E.g., IDS, Firewall, NAT, Load balancer, ...
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Pattern Matching for
Deep Packet Inspection

* Looking for known patterns in packet payloads
— String pattern matching (Fixed-length string) and Regex matching (PCRE)
- 5K ~ 26K rules in public rule-sets for network applications

* Rule Examples

— Rule 1
— Rule 2
— Rule 3

Content: “Object”

PCRE: “/(ActiveX|Create)Object/i”

Content: “Persits.XUpload” | PCRE: “\s*\([\x22\x27]Persits.XUpload/i”

Content: “FieldListCtrl” ' PCRE: “ACCWIZ\x2eFieldListCtrl\x2e1\x2e8/i”
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Pattern Matching for
Deep Packet Inspection

* Looking for known patterns in packet payloads
— String pattern matching (Fixed-length string) and Regex matching (PCRE)
- 5K ~ 26K rules in public rule-sets for network applications

* Network applications using pattern matching
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However, String Pattern Matching

is Performance Bom of CPU cycles
consumed by

string pattern matching *

Network Application Logic
Applications (e.g., String pattern matching,

. Regular expression matching, ...)

Intel DPDK, PF_RING

/ Packet I/0
I
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\ netmap [USENIX ATC 12]

* (1) S. Antonatos et al. Generating Realistic Workloads for Network Intrusion Detection Systems. ACM SIGSOFT SEN, 2004.
(2) M. A. Jamshed et al. Kargus: A Highly-scalable Software-based Intrusion Detection System. ACM CCS, 2012.
(3) Chris Ueland. Scaling CloudFlare’s massive WAF. http://www.scalescale.com/scaling-cloudflaresmassive-waf/
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However, String Pattern Matching
is Performance Bom of CPU cycles
consumed by
mern matching *

N
Can we improve software-based string matching?

How does it affect application performance?
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* (1) S. Antonatos et al. Generating Realistic Workloads for Network Intrusion Detection Systems. ACM SIGSOFT SEN, 2004.
(2) M. A. Jamshed et al. Kargus: A Highly-scalable Software-based Intrusion Detection System. ACM CCS, 2012.
(3) Chris Ueland. Scaling CloudFlare’s massive WAF. http://www.scalescale.com/scaling-cloudflaresmassive-waf/




Throughput (Gbps)

DFC: High-Speed String Matching

1) Outperforms state-of-the-art algorithm by a factor of up to 2.4

2) Improves network applications performance Existing-approach-based

DFC-based
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Three Requirements of String Matching

* Support exact matching
— As opposed to false positives

* Handle short and variable size patterns
efficiently

— 52% of patterns are short (< 9 byte).

29 yte

* Provide efficient online lookup against
a stream of data (e.g., network traffic) < Pattern length distribution >

* Commercial pattern sets of IDS & Web Firewall
(ET-Pro, Snort VRT, OWASP ModSecurity CRS)



Limitations of Existing Approaches

e Aho-Corasick (AC)

— Widely used by Suricata, Snort, CloudFlare, ...
— Constructs a finite state machine from patterns
- Locates all occurrences of any patterns using the state machine

* Example

HIS || HERS || HE || SHE

Patterns:
- Input text : FIINISHED

- Result: SHE HE
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Limitations of Existing Approaches (Cont.)

* Heuristic-based approach ( Boyer-Moore, Wu-Manber, ... )
- Advances window by multiple characters using “bad character” and “good suffix”
- Not effective with short and variable size patterns
- Hard to leverage instruction-level pipelining

e Hashing-based approach ( Feed-forward Bloom filters (FFBF), ... )
— Compares hash of text block with hash of pattern

— Requires expensive hash computations (2.5X more instructions than DFC)
- Not effective with short and variable size patterns
- Induces false positives



DFC: Design Goal

* Overcomes the limitations of existing approaches
— Consumes small memory
- Works efficiently with short and variable size patterns
— Delivers high instruction-level parallelism

* Works efficiently even in worst case
— Worst case where all packets contain attack patterns



DFC: Overview

* Exploits a simple and efficient primitive
- Used as a key building block of DFC
- Requires small number of operations and memory lookups
— Filters out innocent windows of input text

* Progressively eliminates false positives
— Handles each pattern in a different way in terms of pattern length

* Verifies exact matching
— Exploits hash tables



DFC: Component Overview

* Initial Filtering
| — Uses an efficient primitive “Direct filter”

— Eliminates innocent windows of input text
ﬁ @ @ comparing few bytes (2~3 byte)
* Progressive Filtering
— Eliminates innocent windows further
TTTT.. — Determines lengths of patterns that
I window might match

— Applies additional filtering proportional
to the lengths

* Verification
— Verifies whether exact match is generated




DFC: Initial Filtering

* Uses a single Direct filter
— A bitmap indexed by several bytes of input text
— Example (Using 2B sliding window)

/ Example pattern:\

01100100 01100101 ‘ at|tack
Packet Payload: | GET /|de|str'oy/attack/tr‘y—2@
] ‘athlete

Direct filter> | 0 | 0|0 |] O o|lo]|oO \ |auF:hor* /
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dc dd de as at au




DFC: Initial Filtering
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DFC: Initial Filtering

* Uses a single Direct filter
— A bitmap indexed by several bytes of input text
— Example (Using 2B sliding window)

01100100 01100101

Packet Payload:

GET /|de|str'oyack/tr"y—2@

l

Direct filter > -

/ Example pattern:\

‘atkack
‘athlete

{
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DFC: Initial Filtering

* Uses a single Direct filter

1) No data dependency
(Instruction parallelism 1)

/ Example pattern:\
~
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DFC: Progressive Filtering

 Further eliminates innocent windows

Direct Filter J
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DFC: Verification

e Exact matching : (100 — 94%) * (100 — up to 84%) = only 4%!

Packet Payload:

GET /destroy/attack/try-20

Hash
(‘atta’)

%Q Comparison }
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DFC: Two-Stage Hierarchical Design

* Found from
ET-Pro

or N
1%t Stage Initial Filtering
Progressive Filtering
— — —> L Verification
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\
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2"d Stage
| |- [-Ior- Progressive Filtering
(N L L
Verification
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Evaluation

* Two questions
1) Can we improve software-based string matching?
2) How does it affect application performance?

* Machine Specification & Workload
— Intel Xeon E5-2690 (16 cores, 20MB for L3 cache)
- 128 GB of RAM
- Intel®Compilers (icc)
— Using real traffic trace from ISP in south Korea



Standalone Benchmark (1/2) — Average Case
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* MWM: Modified Wu-Manber



Standalone Benchmark (2/2) — Worst Case

* Worst case 1 (Single pattern)
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Why does DFC work well?

1 Instruction Count @OIPC (1AC ODFC
Factorincrease 3 # of cache misses 2
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Normalized throughput

Accelerating Network Applications using DFC
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DFC: High-Speed String Pattern Matching

 String pattern matching is a performance-critical task.

* DFC accelerates string pattern matching by
- Using small size of basic building block
— Avoiding data dependency in critical path

* DFC delivers 2.4X speedup compared to Aho-Corasick.
- 1.4X in the worst case

* DFC improves application performance by up to 130%.

* Detailed information at ina.kaist.ac.kr/~dfc



http://ina.kaist.ac.kr/~dfc

