DFC: Accelerating
String Pattern Matching for
Network Applications

Byungkwon Choi, Jongwook Chae,
Muhammad Jamshed, KyoungSoo Park,
Dongsu Han

KAIST




Trend : Popularity of Network Function
Virtualization (NFV)

* NFV : Commodity hardware appliances = Software layer

- Virtualizes entire class of network functions
- E.g., IDS, Firewall, NAT, Load balancer, ...

Home » Machine to Machine » Vodafone uses Affirmed Metworks MFV Solutions to Deliver M2M Services

Vodafone uses Affirmed Networks NFV
Solutions to Deliver M2M Services
ENTERPRISE IT/IT NETWORK == )dafone’s

Telecommunications Mobile Network
Wireless Market Research News

SDN, NFV & network virtualization

gwoagléet will grow CAERT?f 37% by |Gisco’s new NFVI solution to speed up
according to market forecasts ﬂEth]rk SBTVICBS

IT Network . CBR 5taff )




Pattern Matching for
Deep Packet Inspection

* Looking for known patterns in packet payloads
— String pattern matching (Fixed-length string) and Regex matching (PCRE)
- 5K ~ 26K rules in public rule-sets for network applications

* Rule Examples

— Rule 1
— Rule 2
— Rule 3

Content: “Object”

PCRE: “/(ActiveX|Create)Object/i”

Content: “Persits.XUpload” | PCRE: “\s*\([\x22\x27]Persits.XUpload/i”

Content: “FieldListCtrl” ' PCRE: “ACCWIZ\x2eFieldListCtrl\x2e1\x2e8/i”

\ ¢

\ ¢

String pattern matching Regular expression matching




Pattern Matching for
Deep Packet Inspection

* Looking for known patterns in packet payloads
— String pattern matching (Fixed-length string) and Regex matching (PCRE)
- 5K ~ 26K rules in public rule-sets for network applications

* Network applications using pattern matching

[ Attack patterns ]

g [ Intrusion Detection J Regex 2

. Regex matching
\_, String pattern matching (Single regex)

(Multi patterns)

Fixed-length string 1 ™% | Regex 1
Fixed-length string 2

2444/




Pattern Matching for
Deep Packet Inspection

* Looking for known patterns in packet payloads
— String pattern matching (Fixed-length string) and Regex matching (PCRE)
- 5K ~ 26K rules in public rule-sets for network applications

* Network applications using pattern matching

[ Attack patterns ] | Attack patterns }
@ [ Intrusion Detection J @i// [ Web Application Firewall J

[ Watermark }

[ Banned words ] ° \
@ [ Parental Filtering J ‘av [ Exfiltration Detection J




However, String Pattern Matching

is Performance Bom of CPU cycles
consumed by

string pattern matching *

Network Application Logic
Applications (e.g., String pattern matching,

. Regular expression matching, ...)

Intel DPDK, PF_RING

/ Packet I/0
I
K PacketShader [SIGCOMM 11]
\ netmap [USENIX ATC 12]

* (1) S. Antonatos et al. Generating Realistic Workloads for Network Intrusion Detection Systems. ACM SIGSOFT SEN, 2004.
(2) M. A. Jamshed et al. Kargus: A Highly-scalable Software-based Intrusion Detection System. ACM CCS, 2012.
(3) Chris Ueland. Scaling CloudFlare’s massive WAF. http://www.scalescale.com/scaling-cloudflaresmassive-waf/

~

[X [OSDI 14], OpenFastPath

Networking Stack  [is [NSDI 14], 6WINDGate |

~




However, String Pattern Matching
is Performance Bom of CPU cycles
consumed by
mern matching *

N
Can we improve software-based string matching?

How does it affect application performance?

INELWUIKIINY SLUCK

_ __stPath
mTCP [NSDI 14], 6WINDGate

~

Packet I/0 Intel DPDK, PF_RING
K PacketShader [SIGCOMM 11]
\ netmap [USENIX ATC 12]

* (1) S. Antonatos et al. Generating Realistic Workloads for Network Intrusion Detection Systems. ACM SIGSOFT SEN, 2004.
(2) M. A. Jamshed et al. Kargus: A Highly-scalable Software-based Intrusion Detection System. ACM CCS, 2012.
(3) Chris Ueland. Scaling CloudFlare’s massive WAF. http://www.scalescale.com/scaling-cloudflaresmassive-waf/




Throughput (Gbps)

DFC: High-Speed String Matching

1) Outperforms state-of-the-art algorithm by a factor of up to 2.4

2) Improves network applications performance Existing-approach-based

DFC-based
29.6 Gb < : 8 i
30 r P> S 8K 6,537 req./s ® 8 6.7 Gbps
« 6KT = 6 F
20 + - 4,155 req./s o 4.2 Gbps
12.8 Gbps = 4Kr w 4 r
> >
101 2 2Kr 2 2t
op —
0 Gt o 0 - 0 bt
-
|_

Intrusion Detection Web Application Firewall Traffic Classification



Three Requirements of String Matching

* Support exact matching
— As opposed to false positives

* Handle short and variable size patterns
efficiently

— 52% of patterns are short (< 9 byte).

29 yte

* Provide efficient online lookup against
a stream of data (e.g., network traffic) < Pattern length distribution >

* Commercial pattern sets of IDS & Web Firewall
(ET-Pro, Snort VRT, OWASP ModSecurity CRS)



Limitations of Existing Approaches

e Aho-Corasick (AC)

— Widely used by Suricata, Snort, CloudFlare, ...
— Constructs a finite state machine from patterns
- Locates all occurrences of any patterns using the state machine

* Example

HIS || HERS || HE || SHE

Patterns:
- Input text : FIINISHED

- Result: SHE HE




Limitations of Existing Approaches

e Aho-Corasick (AC)

— Widely used by Suricata, Snort, Clou 400 BAC -
— Constructs a finite state machine fro ADFC T
— Locates all occurrences of any pattet 2 300 -

I
el . o 7

* Limitations of AC £ 200 - >.4x

— State machine is very large. “E_ /,_l_
— Working set > CPU cache size g 100 - -/,"5 2X
— Instruction throughput is slow. o e 1

S I

0
24 8 16 32
Number of patterns (K)




Limitations of Existing Approaches (Cont.)

* Heuristic-based approach ( Boyer-Moore, Wu-Manber, ... )
- Advances window by multiple characters using “bad character” and “good suffix”
- Not effective with short and variable size patterns
- Hard to leverage instruction-level pipelining

e Hashing-based approach ( Feed-forward Bloom filters (FFBF), ... )
— Compares hash of text block with hash of pattern

— Requires expensive hash computations (2.5X more instructions than DFC)
- Not effective with short and variable size patterns
- Induces false positives



DFC: Design Goal

* Overcomes the limitations of existing approaches
— Consumes small memory
- Works efficiently with short and variable size patterns
— Delivers high instruction-level parallelism

* Works efficiently even in worst case
— Worst case where all packets contain attack patterns



DFC: Overview

* Exploits a simple and efficient primitive
- Used as a key building block of DFC
- Requires small number of operations and memory lookups
— Filters out innocent windows of input text

* Progressively eliminates false positives
— Handles each pattern in a different way in terms of pattern length

* Verifies exact matching
— Exploits hash tables



DFC: Component Overview

* Initial Filtering
| — Uses an efficient primitive “Direct filter”

— Eliminates innocent windows of input text
ﬁ @ @ comparing few bytes (2~3 byte)
* Progressive Filtering
— Eliminates innocent windows further
TTTT.. — Determines lengths of patterns that
I window might match

— Applies additional filtering proportional
to the lengths

* Verification
— Verifies whether exact match is generated




DFC: Initial Filtering

* Uses a single Direct filter
— A bitmap indexed by several bytes of input text
— Example (Using 2B sliding window)

/ Example pattern:\

01100100 01100101 ‘ at|tack
Packet Payload: | GET /|de|str'oy/attack/tr‘y—2@
] ‘athlete

Direct filter> | 0 | 0|0 |] O o|lo]|oO \ |auF:hor* /
4 ¢ 4 4 ¢ 4

dc dd de as at au




DFC: Initial Filtering

* Uses a single Direct filter
— A bitmap indexed by several bytes of input text
— Example (Using 2B sliding window)

/ Example pattern:\

01100100 01100101 ‘ atltack
Packet Payload: | GET /|de|str'oy/attack/tr"y—2@
-~ No oatt ‘athlete
o pattern -
beginning with 1 0 ofo]O0 [~ |au|T:h0r‘
ldel - \ /

t ¢ 1

- dc dd de as at au




DFC: Initial Filtering

* Uses a single Direct filter
— A bitmap indexed by several bytes of input text
— Example (Using 2B sliding window)

01100100 01100101

Packet Payload:

GET /|de|str'oyack/tr"y—2@

l

Direct filter > -

/ Example pattern:\

‘atkack
‘athlete

{
ofofo |- olII"II[m of[ofo
|

Further inspection

\ |auF:hor /




DFC: Initial Filtering

* Uses a single Direct filter

1) No data dependency
(Instruction parallelism 1)

/ Example pattern:\
~

N S
N
packet|  2)2SHIFTsand 1AND [0 qETT o T latjtack
§

<+

. - ‘athlete
memory rererence
Direct f}]tEr? “*1 U U I U I “‘_ 94% of windows “\ | aU‘EhOP /

are filtered out.

-
3) 2 byte > 216
= 65536 = 8KB
\_




DFC: Progressive Filtering

 Further eliminates innocent windows

Direct Filter J

Packet Payload: | GET /destroy/lﬁkta‘cil;t\r‘ykz@ ‘(

‘e

ttacker]

Additional
filtering

-

i
X hi

attack
)(athlete

)(attacker‘

)(attachment




DFC: Verification

e Exact matching : (100 — 94%) * (100 — up to 84%) = only 4%!

Packet Payload:

GET /destroy/attack/try-20

Hash
(‘atta’)

%Q Comparison }

[1 etk -

0

2 [riathl -ete
traf fic




DFC: Two-Stage Hierarchical Design

* Found from
ET-Pro

or N
1%t Stage Initial Filtering
Progressive Filtering
— — —> L Verification
> //% {
\
4 2 )
2"d Stage
| |- [-Ior- Progressive Filtering
(N L L
Verification
9 J




Evaluation

* Two questions
1) Can we improve software-based string matching?
2) How does it affect application performance?

* Machine Specification & Workload
— Intel Xeon E5-2690 (16 cores, 20MB for L3 cache)
- 128 GB of RAM
- Intel®Compilers (icc)
— Using real traffic trace from ISP in south Korea



Standalone Benchmark (1/2) — Average Case

[DHeuristic-based (MWM*)

[ 1Aho-Corasick (AC)

IDFC -@- Improvement

100
30

Throughput 60
(Gbps) 40

20
0

2.4
ﬁ-__f-i_ 2.1 2.1 >0 22
" 0. 9 1,
1.5 Improvement
11 over AC
- 0.5
— 0
1K 5K 10K 15K 26K

Number of patterns
(From ET-Pro, May 2015)

* MWM: Modified Wu-Manber



Standalone Benchmark (2/2) — Worst Case

* Worst case 1 (Single pattern)

ATTACK

30

Throughput (g
(Gbps)

JAC

O DEC

70% 1

0%

50% { 100%

Fraction of malicious Pz

ets

T

* Worst case 2 (Concatenated)

-« |[ATTACK1

ATTACK2

ATTACK3 |-

AC: 62X increased
size of working set

0.0

JAC

[0 DFC

* Packet size : 1514B



Why does DFC work well?

1 Instruction Count @OIPC (1AC ODFC
Factorincrease 3 # of cache misses 2
with DFC over AC 53 per one byte
' processing
2 |
1.07
1.2 1 r
1 |
0.28 0.19
0.04
O 0 L

L1-D L2 cache
cache



Normalized throughput

Accelerating Network Applications using DFC

w

N

[H

o

130% 1

29.6 Gbps

12.8 Gbps

[1AC-based @ DFC-based

60% 1 60% 1

6,537 req./s 6.7 Gbps

4,155 req./s

4.2 Gbps

Large # of
patterns

Intrusion Detection
(Kargus - CCS "12, 6K)

(ModSecurity, 5K) (from nDP

Web Application Firewall faf%c\mssifiii '|on



DFC: High-Speed String Pattern Matching

 String pattern matching is a performance-critical task.

* DFC accelerates string pattern matching by
- Using small size of basic building block
— Avoiding data dependency in critical path

* DFC delivers 2.4X speedup compared to Aho-Corasick.
- 1.4X in the worst case

* DFC improves application performance by up to 130%.

* Detailed information at ina.kaist.ac.kr/~dfc



http://ina.kaist.ac.kr/~dfc

