
Enabling ECN in Multi-Service
Multi-Queue Data Centers

 Wei Bai, Li Chen, Kai Chen, Haitao Wu (Microsoft)

SING Group @ Hong Kong University of Science and Technology

1

Background

• Data Centers

– Many services with diverse network requirements

2

Background

• Data Centers

– Many services with diverse network requirements

• ECN-based Transports

ECN = Explicit Congestion Notification

3

Background

• Data Centers

– Many services with diverse network requirements

• ECN-based Transports

– Achieve high throughput & low latency

– Widely deployed: DCTCP, DCQCN, etc.

4

ECN-based Transports

5

ECN-based Transports

• ECN-enabled end-hosts

– React to ECN by adjusting sending rates

6

ECN-based Transports

• ECN-enabled end-hosts

– React to ECN by adjusting sending rates

• ECN-aware switches

– Perform ECN marking based on Active Queue
Management (AQM) policies

7

ECN-based Transports

• ECN-enabled end-hosts

– React to ECN by adjusting sending rates

• ECN-aware switches

– Perform ECN marking based on Active Queue
Management (AQM) policies

Our focus

8

ECN-aware Switches

• Adopt RED to perform ECN marking

RED = Random Early Detection

9

ECN-aware Switches

• Adopt RED to perform ECN marking

– Per-queue/port/service-pool ECN/RED

Track buffer occupancy of different egress entities

10

ECN-aware Switches

• Adopt RED to perform ECN marking

– Per-queue/port/service-pool ECN/RED

port
queue 1

queue 2

11

ECN-aware Switches

• Adopt RED to perform ECN marking

– Per-queue/port/service-pool ECN/RED

port
queue 1

queue 2

12

ECN-aware Switches

• Adopt RED to perform ECN marking

– Per-queue/port/service-pool ECN/RED

port
queue 1

queue 2

port
queue 3

queue 4

shared buffer

13

ECN-aware Switches

• Adopt RED to perform ECN marking

– Per-queue/port/service-pool ECN/RED

• Leverage multiple queues to classify traffic

– Isolate traffic from different services/applications

14

ECN-aware Switches

• Adopt RED to perform ECN marking

– Per-queue/port/service-pool ECN/RED

• Leverage multiple queues to classify traffic

– Isolate traffic from different services/applications

Services running DCTCP

Services running TCP

Services running UDP

15

ECN-aware Switches

• Adopt RED to perform ECN marking

– Per-queue/port/service-pool ECN/RED

• Leverage multiple queues to classify traffic

– Isolate traffic from different services/applications

Real-time services

Best-effort services

Background services

16

ECN-aware Switches

• Adopt RED to perform ECN marking

– Per-queue/port/service-pool ECN/RED

• Leverage multiple queues to classify traffic

– Isolate traffic from different services/applications

– Weighted max-min fair sharing among queues

Real-time services

Best-effort services

Background services

Weight = 4

Weight = 2

Weight = 1

17

ECN-aware Switches

• Adopt RED to perform ECN marking

– Per-queue/port/service-pool ECN/RED

• Leverage multiple queues to classify traffic

– Isolate traffic from different services/applications

– Weighted max-min fair sharing among queues

Perform ECN marking in multi-queue context

18

ECN marking with Single Queue

19

ECN marking with Single Queue

RED Algorithm

20

ECN marking with Single Queue

RED Algorithm Practical Configuration

(e.g., DCTCP)

21

ECN marking with Single Queue

• To achieve 100% throughput

𝐾 ≥ 𝐶 × 𝑅𝑇𝑇 × 𝜆

22

ECN marking with Single Queue

• To achieve 100% throughput

𝐾 ≥ 𝐶 × 𝑅𝑇𝑇 × 𝜆

Determined by congestion control algorithms

23

ECN marking with Single Queue

• To achieve 100% throughput

𝐾 ≥ 𝐶 × 𝑅𝑇𝑇 × 𝜆

Standard ECN marking threshold

24

ECN marking with Single Queue

• To achieve 100% throughput

𝐾 ≥ 𝐶 × 𝑅𝑇𝑇 × 𝜆

The standard threshold is relatively stable in DCN,

e.g., 65 packets for 10G network (DCTCP paper)

25

ECN marking with Multi-Queue (1)

26

ECN marking with Multi-Queue (1)

• Per-queue with the standard threshold

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆

standard threshold

port

queue 1

queue 2

queue 3

Don’t mark Mark

27

ECN marking with Multi-Queue (1)

• Per-queue with the standard threshold

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆

– Increase packet latency

 standard threshold

port

queue 1

queue 2

queue 3

Don’t mark Mark

28

ECN marking with Multi-Queue (1)

• Per-queue with the standard threshold

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆

– Increase packet latency

29

Evenly classify 8 long-lived flows into a varying number of queues

ECN marking with Multi-Queue (2)

• Per-queue with the minimum threshold

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆 × 𝑤𝑖 𝑤𝑗

Normalized weight

minimum threshold

port

queue 1

queue 2

queue 3

Don’t mark Mark

30

ECN marking with Multi-Queue (2)

• Per-queue with the minimum threshold

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆 × 𝑤𝑖 𝑤𝑗

– Degrade throughput

minimum threshold

port

queue 1

queue 2

queue 3

Don’t mark Mark

31

ECN marking with Multi-Queue (2)

• Per-queue with the minimum threshold

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆 × 𝑤𝑖 𝑤𝑗

– Degrade throughput

Overall Average FCT Average FCT (>10MB)
32

ECN marking with Multi-Queue (3)

• Per-port

– 𝐾𝑝𝑜𝑟𝑡 = 𝐶 × 𝑅𝑇𝑇 × 𝜆

standard threshold

port

queue 1

queue 2

queue 3

Don’t mark Mark

33

ECN marking with Multi-Queue (3)

• Per-port

– 𝐾𝑝𝑜𝑟𝑡 = 𝐶 × 𝑅𝑇𝑇 × 𝜆

– Violate weighted fair sharing

standard threshold

port

queue 1

queue 2

queue 3

Don’t mark Mark

34

ECN marking with Multi-Queue (3)

• Per-port

– 𝐾𝑝𝑜𝑟𝑡 = 𝐶 × 𝑅𝑇𝑇 × 𝜆

– Violate weighted fair sharing

Both services have a equal-weight dedicated queue on the switch
35

Question

• Can we design an ECN marking scheme with
following properties:

– Deliver low latency

– Achieve high throughput

– Preserve weighted fair sharing

– Compatible with legacy ECN/RED implementation

36

Question

• Can we design an ECN marking scheme with
following properties:

– Deliver low latency

– Achieve high throughput

– Preserve weighted fair sharing

– Compatible with legacy ECN/RED implementation

Our answer: MQ-ECN

37

MQ-ECN’S DESIGN

38

Start from GPS Model

• 𝑁 queues share the link with capacity 𝐶

2
. . .

𝑪

N

1

Generalized Processor Sharing (GPS)

39

• 𝑁 queues share the link with capacity 𝐶

2
. . .

𝑪

N

1

Input Rate

𝑟1

𝑟𝑁

. . .

𝑟2

Start from GPS Model

40

Start from GPS Model

• 𝑁 queues share the link with capacity 𝐶

2
. . .

𝑪

Weight

N

1 𝑤1

𝑤2

𝑤𝑁

Input Rate

𝑟1

𝑟𝑁

. . .
. . .

𝑟2

41

Start from GPS Model

• 𝑁 queues share the link with capacity 𝐶

• 𝐶 = min⁡(𝑟𝑖
𝑁
𝑖=1 , 𝑤𝑖𝛼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

2
. . .

𝑪

Weight

N

1 𝑤1

𝑤2

𝑤𝑁

Input Rate

𝑟1

𝑟𝑁

. . .
. . .

Output Rate

min⁡(𝑟1,𝑤1𝛼)

min⁡(𝑟2, 𝑤2𝛼)

min⁡(𝑟𝑁,𝑤𝑁𝛼)

. . .

Weighted Fair Share Rate

𝑟2

42

Start from GPS Model

• 𝑁 queues share the link with capacity 𝐶

• 𝐶 = min⁡(𝑟𝑖
𝑁
𝑖=1 , 𝑤𝑖𝛼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

• Use ECN to throttle queue i if 𝑟𝑖 > 𝑤𝑖𝛼

2
. . .

𝑪

Weight

N

1 𝑤1

𝑤2

𝑤𝑁

Input Rate

𝑟1

𝑟𝑁

. . .
. . .

Output Rate

min⁡(𝑟1,𝑤1𝛼)

min⁡(𝑟2, 𝑤2𝛼)

min⁡(𝑟𝑁,𝑤𝑁𝛼)

. . .

𝑟2

43

Start from GPS Model

• 𝑁 queues share the link with capacity 𝐶

• 𝐶 = min⁡(𝑟𝑖
𝑁
𝑖=1 , 𝑤𝑖𝛼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑤𝑖𝛼 × 𝑅𝑇𝑇 × 𝜆

2
. . .

𝑪

Weight

N

1 𝑤1

𝑤2

𝑤𝑁

Input Rate

𝑟1

𝑟𝑁

. . .
. . .

Output Rate

min⁡(𝑟1,𝑤1𝛼)

min⁡(𝑟2, 𝑤2𝛼)

min⁡(𝑟𝑁,𝑤𝑁𝛼)

. . .

𝑟2

44

Start from GPS Model

• 𝑁 queues share the link with capacity 𝐶

• 𝐶 = min⁡(𝑟𝑖
𝑁
𝑖=1 , 𝑤𝑖𝛼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑤𝑖𝛼 × 𝑅𝑇𝑇 × 𝜆

2
. . .

𝑪

Weight

N

1 𝑤1

𝑤2

𝑤𝑁

Input Rate

𝑟1

𝑟𝑁

. . .
. . .

Output Rate

min⁡(𝑟1,𝑤1𝛼)

min⁡(𝑟2, 𝑤2𝛼)

min⁡(𝑟𝑁,𝑤𝑁𝛼)

. . .

𝑟2

bit-by-bit round robin

45

Start from GPS Model

• 𝑁 queues share the link with capacity 𝐶

• 𝐶 = min⁡(𝑟𝑖
𝑁
𝑖=1 , 𝑤𝑖𝛼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑤𝑖𝛼 × 𝑅𝑇𝑇 × 𝜆

2
. . .

𝑪

Quantum

N

1 𝑤1bits

𝑤2bits

𝑤𝑁bits

Input Rate

𝑟1

𝑟𝑁

. . .
. . .

Output Rate

min⁡(𝑟1,𝑤1𝛼)

min⁡(𝑟2, 𝑤2𝛼)

min⁡(𝑟𝑁,𝑤𝑁𝛼)

. . .

bit-by-bit round robin

𝑟2

46

Start from GPS Model

• 𝑁 queues share the link with capacity 𝐶

• 𝐶 = min⁡(𝑟𝑖
𝑁
𝑖=1 , 𝑤𝑖𝛼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑤𝑖𝛼 × 𝑅𝑇𝑇 × 𝜆

2
. . .

𝑪

Quantum

N

1 𝑞𝑢𝑎𝑛𝑡𝑢𝑚1

Input Rate

𝑟1

𝑟𝑁

. . .
. . .

Output Rate

min⁡(𝑟1,𝑤1𝛼)

min⁡(𝑟2, 𝑤2𝛼)

min⁡(𝑟𝑁,𝑤𝑁𝛼)

. . .

Time of a round: 𝑇𝑟𝑜𝑢𝑛𝑑

𝑞𝑢𝑎𝑛𝑡𝑢𝑚2

𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑁

𝑟2

47

Start from GPS Model

• 𝑁 queues share the link with capacity 𝐶

• 𝐶 = min⁡(𝑟𝑖
𝑁
𝑖=1 , 𝑤𝑖𝛼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆

2
. . .

𝑪

N

1

Input Rate

𝑟1

𝑟𝑁

. . .

Output Rate

min⁡(𝑟1,𝑤1𝛼)

min⁡(𝑟2, 𝑤2𝛼)

min⁡(𝑟𝑁,𝑤𝑁𝛼)

. . .

Time of a round: 𝑇𝑟𝑜𝑢𝑛𝑑

𝑟2

Quantum

𝑞𝑢𝑎𝑛𝑡𝑢𝑚1

𝑞𝑢𝑎𝑛𝑡𝑢𝑚2

𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑁

. . .

48

MQ-ECN

• 𝑁 queues share the link with capacity 𝐶

• 𝐶 = min⁡(𝑟𝑖
𝑁
𝑖=1 , 𝑤𝑖𝛼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆

49

MQ-ECN

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆

Why does it work?

50

MQ-ECN

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆

– Deliver low latency

– Achieve high throughput

𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) adapts to traffic dynamics

51

MQ-ECN

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆

– Deliver low latency

– Achieve high throughput

– Preserve weighted fair sharing

𝐾𝑞𝑢𝑒𝑢𝑒(𝑖)is in proportion to the weight

52

MQ-ECN

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆

– Deliver low latency

– Achieve high throughput

– Preserve weighted fair sharing

– Compatible with legacy ECN/RED implementation

 Per-queue ECN/RED with dynamic thresholds

53

MQ-ECN

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆

– Deliver low latency

– Achieve high throughput

– Preserve weighted fair sharing

– Compatible with legacy ECN/RED implementation

• More details

– Handle inaccurate estimation of 𝑇𝑟𝑜𝑢𝑛𝑑

– Apply to round-robin packet schedulers

• DWRR, WRR, etc.

54

Testbed Evaluation

• MQ-ECN software prototype

– Linux qdisc kernel module performing DWRR

• Testbed setup

– 9 servers are connected to a server-emulated
switch with 9 NICs

– End-hosts use DCTCP as the transport protocol

• Benchmark traffic

– Web search (DCTCP paper)

• More results in large-scale simulations
55

Static Flow Experiment

Service 1

Service 2

weight

1

1 flow

4 flows

1

56

Static Flow Experiment

57

Static Flow Experiment

MQ-ECN preserves weighted fair sharing

58

Realistic Traffic: Small Flows (<100KB)

Balanced traffic pattern Unbalanced traffic pattern

59

Realistic Traffic: Small Flows (<100KB)

MQ-ECN achieves low latency

Balanced traffic pattern Unbalanced traffic pattern

60

Realistic Traffic: Large Flows (>10MB)

Balanced traffic pattern Unbalanced traffic pattern

61

Realistic Traffic: Large Flows (>10MB)

MQ-ECN achieves high throughput

Balanced traffic pattern Unbalanced traffic pattern

62

Conclusions

• Identify performance impairments of existing
ECN/RED schemes in multi-queue context

• MQ-ECN: simple, yet effective

– High throughput, low latency, weighted fair sharing
– Currently, apply to round-robin packet schedulers

• ECN marking scheme for arbitrary schedulers is
an important ongoing effort

• Code: http://sing.cse.ust.hk/projects/MQ-ECN

63

http://sing.cse.ust.hk/projects/MQ-ECN
http://sing.cse.ust.hk/projects/MQ-ECN
http://sing.cse.ust.hk/projects/MQ-ECN

Thanks!

64

Support Arbitrary Packet Schedulers

• Find a general solution to estimate per-queue
effective draining rate

– Draining rate should be measured when the
queue keeps congested

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝒘𝒊𝜶× 𝑅𝑇𝑇 × 𝜆

– Measurement window is hard to decide

65

