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Background 

• Data Centers 

– Many services with diverse network requirements 

• ECN-based Transports 

– Achieve high throughput & low latency 

– Widely deployed: DCTCP, DCQCN, etc. 
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• ECN-aware switches  

– Perform ECN marking based on Active Queue 
Management (AQM) policies  

Our focus 
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ECN-aware Switches 

• Adopt RED to perform ECN marking  

RED = Random Early Detection 
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• Adopt RED to perform ECN marking 

– Per-queue/port/service-pool ECN/RED  

Track buffer occupancy of different egress entities 
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ECN-aware Switches 
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ECN-aware Switches 

• Adopt RED to perform ECN marking 

– Per-queue/port/service-pool ECN/RED  

• Leverage multiple queues to classify traffic 

– Isolate traffic from different services/applications 

– Weighted max-min fair sharing among queues 

 

 

 

Real-time services 

Best-effort services 

Background services 

Weight = 4   

Weight = 2 

Weight = 1 
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ECN-aware Switches 

• Adopt RED to perform ECN marking 

– Per-queue/port/service-pool ECN/RED  

• Leverage multiple queues to classify traffic 

– Isolate traffic from different services/applications 

– Weighted max-min fair sharing among queues 

 

 

 
Perform ECN marking in multi-queue context 
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ECN marking with Single Queue 
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ECN marking with Single Queue 

 

RED Algorithm 
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ECN marking with Single Queue 

 

RED Algorithm Practical Configuration 

(e.g., DCTCP) 
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ECN marking with Single Queue 

• To achieve 100% throughput 
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ECN marking with Single Queue 

• To achieve 100% throughput 

𝐾 ≥ 𝐶 × 𝑅𝑇𝑇 × 𝜆 

Determined by congestion control algorithms  

23 



ECN marking with Single Queue 
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ECN marking with Single Queue 

• To achieve 100% throughput 

 

𝐾 ≥ 𝐶 × 𝑅𝑇𝑇 × 𝜆 

The standard threshold is relatively stable in DCN, 

e.g., 65 packets for 10G network (DCTCP paper) 
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ECN marking with Multi-Queue (1) 
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ECN marking with Multi-Queue (1)  

• Per-queue with the standard threshold  

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆  

standard threshold  
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ECN marking with Multi-Queue (1) 

• Per-queue with the standard threshold  

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆  

– Increase packet latency  
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Evenly classify 8 long-lived flows into a varying number of queues  



ECN marking with Multi-Queue (2) 

• Per-queue with the minimum threshold 

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆 × 𝑤𝑖  𝑤𝑗  

Normalized weight 

minimum threshold  
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ECN marking with Multi-Queue (2) 

• Per-queue with the minimum threshold 

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆 × 𝑤𝑖  𝑤𝑗  

– Degrade throughput 

minimum threshold  

port 

queue 1 

queue 2 

queue 3 

Don’t mark Mark 

31 



ECN marking with Multi-Queue (2) 

• Per-queue with the minimum threshold 

– 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝐶 × 𝑅𝑇𝑇 × 𝜆 × 𝑤𝑖  𝑤𝑗  

– Degrade throughput 

Overall Average FCT  Average FCT (>10MB)  
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ECN marking with Multi-Queue (3) 

• Per-port 

– 𝐾𝑝𝑜𝑟𝑡 = 𝐶 × 𝑅𝑇𝑇 × 𝜆 

standard threshold  
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ECN marking with Multi-Queue (3) 

• Per-port 

– 𝐾𝑝𝑜𝑟𝑡 = 𝐶 × 𝑅𝑇𝑇 × 𝜆 

– Violate weighted fair sharing 

standard threshold  
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ECN marking with Multi-Queue (3) 

• Per-port 

– 𝐾𝑝𝑜𝑟𝑡 = 𝐶 × 𝑅𝑇𝑇 × 𝜆 

– Violate weighted fair sharing 

Both services have a equal-weight dedicated queue on the switch  
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Question 

• Can we design an ECN marking scheme with 
following properties: 

– Deliver low latency 

– Achieve high throughput 

– Preserve weighted fair sharing 

– Compatible with legacy ECN/RED implementation 
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Question 

• Can we design an ECN marking scheme with 
following properties: 

– Deliver low latency 

– Achieve high throughput 

– Preserve weighted fair sharing 

– Compatible with legacy ECN/RED implementation 

Our answer: MQ-ECN 
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MQ-ECN’S DESIGN 
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Start from GPS Model 

• 𝑁 queues share the link with capacity 𝐶 
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MQ-ECN 

• 𝑁 queues share the link with capacity 𝐶 

• 𝐶 =  min⁡(𝑟𝑖
𝑁
𝑖=1 , 𝑤𝑖𝛼)⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡ 

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆 
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MQ-ECN 

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆  
 

 

Why does it work? 
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MQ-ECN 

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆  

– Deliver low latency 

– Achieve high throughput 

 

𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) adapts to traffic dynamics 
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MQ-ECN 

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆  

– Deliver low latency 

– Achieve high throughput 

– Preserve weighted fair sharing 

 

𝐾𝑞𝑢𝑒𝑢𝑒(𝑖)is in proportion to the weight 
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MQ-ECN 

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆  

– Deliver low latency 

– Achieve high throughput 

– Preserve weighted fair sharing 

– Compatible with legacy ECN/RED implementation 

 

 Per-queue ECN/RED with dynamic thresholds 
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MQ-ECN 

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝑞𝑢𝑎𝑛𝑡𝑢𝑚𝑖 𝑇𝑟𝑜𝑢𝑛𝑑 × 𝑅𝑇𝑇 × 𝜆  

– Deliver low latency 

– Achieve high throughput 

– Preserve weighted fair sharing 

– Compatible with legacy ECN/RED implementation 

• More details 

– Handle inaccurate estimation of 𝑇𝑟𝑜𝑢𝑛𝑑  

– Apply to round-robin packet schedulers 

• DWRR, WRR, etc. 
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Testbed Evaluation 

• MQ-ECN software prototype 

– Linux qdisc kernel module performing DWRR 

• Testbed setup 

– 9 servers are connected to a server-emulated 
switch with 9 NICs 

– End-hosts use DCTCP as the transport protocol 

• Benchmark traffic 

– Web search (DCTCP paper) 

• More results in large-scale simulations 
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Static Flow Experiment 
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Static Flow Experiment 
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Static Flow Experiment 

 

MQ-ECN preserves weighted fair sharing 
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Realistic Traffic: Small Flows (<100KB) 

 

Balanced traffic pattern Unbalanced traffic pattern 
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Realistic Traffic: Small Flows (<100KB) 

 

MQ-ECN achieves low latency 

Balanced traffic pattern Unbalanced traffic pattern 
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Realistic Traffic: Large Flows (>10MB) 

 

Balanced traffic pattern Unbalanced traffic pattern 
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Realistic Traffic: Large Flows (>10MB) 

 

MQ-ECN achieves high throughput 

Balanced traffic pattern Unbalanced traffic pattern 
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Conclusions 

• Identify performance impairments of existing 
ECN/RED schemes in multi-queue context 

 
• MQ-ECN: simple, yet effective 

– High throughput, low latency, weighted fair sharing 
– Currently, apply to round-robin packet schedulers   
 

• ECN marking scheme for arbitrary schedulers is 
an important ongoing effort 
 

• Code: http://sing.cse.ust.hk/projects/MQ-ECN  
 
 
 
 

 

63 

http://sing.cse.ust.hk/projects/MQ-ECN
http://sing.cse.ust.hk/projects/MQ-ECN
http://sing.cse.ust.hk/projects/MQ-ECN


Thanks!  
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Support Arbitrary Packet Schedulers 

• Find a general solution to estimate per-queue 
effective draining rate  

– Draining rate should be measured when the 
queue keeps congested 

• 𝐾𝑞𝑢𝑒𝑢𝑒(𝑖) = 𝒘𝒊𝜶× 𝑅𝑇𝑇 × 𝜆 

– Measurement window is hard to decide 
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