BEEREAREB
THE HONG KONG UNIVERSITY OF
SCIENCE AND TECHNOLOGY

ng Lab
HKUST

eXplicit Path Control in Commodity Data
Centers: Design and Applications

1Shuihai Hu, 'Kai Chen, ZHaitao Wu, 'Wei Bai, 3Chang Lan, 'Hao
Wang, “Hongze Zhao, 2Chuanxiong Guo

1Sing Group @ Hong Kong University of Science and Technology,
ZMicrosoft, 3UC Berkeley, “Duke University

USENIX NSDI 2015
Oakland, CA

Data centers around the world

Ocean Australia

Fl"\/\icro's"oft’s Chicago DC Google’s worldwide DC map

Multi-path and ECMP

e Stat

e-of-the-art ECMP

Forward packets based on hash of headers
Flows take randomized, implicit paths

Flow 1
Flow 2
Flow 3 {
Flow 4

On average, over 60% bandwidth waste due
to path collision (Hedera [NSDI’10])

eXplicit Path Control

To fully utilize network, we must
explicitly control paths for flows

Flow 1
Flow 2
Flow 3 {
Flow 4 s

The case for explicit path control (#1)

* Provisioned IOPS (Amazon EBS, = 300Mbps
. | « 100Mbps
= Deliver predictable performance Remaining bandwidth
for I/0 intensive apps, relationa

DBs
= Must provide necessary net
bandwidth guarantee

Explicit path control makes bandwidth
guarantee easier to implement

The case for explicit path control (#2)

Firmware
» DC network updates (zUpdate upgrade

[Sigcomm’13], D1ONySuUS [Sigcomm’14]
= (Congestion-free
= Loop-free

Explicit path control makes DC

network updates easier to conduct ' « 800Mbps

— 800Mbps
Existing traffic

The case for explicit path control (#2)

* DC network updates (zUpdate Upgrade = Reboot

[Sigcomm’13], D1oNnysus [Sigcomm’ 14]
= (Congestion-free
= Loop-free

Explicit path control makes DC

. 7 00Mbps
network updates easier to conduct ' « 800Mbps

— 800Mbps
Existing traffic

The case for explicit path control (#2)

» DC network updates (zUpdate Upgrade completed
[Sigcomm’13], D1ONySuUS [Sigcomm’14]
= (Congestion-free
= Loop-free

Explicit path control makes DC

network updates easier to conduct ' « 800Mbps

— 800Mbps
Existing traffic

The case for explicit path control (#3)

Map Shuffle Reduce

* Map-reduce/Hadoop
applications

= Shuffle stage stresses
network, requires full k

bisection bandwidth

Explicit path control can be

leveraged to arrange parallel

paths for shuffling

Reduce

Still many other cases ...

 Traffic engineering
— e.g., MicroTE [CoNEXT’11], B4/SWAN [Sigcomm’13]
* Flow scheduling or packet scheduling
— e.g., Hedera [NSDI’10], Fastpass [Sigcomm’14]
» Multiple path congestion control
— e.g., MPTCP [Sigcomm’11], XMP [COoNEXT’13]
» Network virtualization and bandwidth guarantees

— e.g., SecondNet [CoNEXT’10], Oktopus [Sigcomm’11], TIVC [Sigcomm’12],
CloudMirror [Sigcomm’14]

» Power saving
— e.g., ElasticTree [NSDI’10]

* Network diagnosis and failure handling
— e.g., NetPilot [Sigcomm’12]

All require or benefit from explicit path control

OpenFlow-enabled (dynamic) implementation

Forward
to controller

Host A Host B

. 1-4K entries

11

OpenFlow-enabled (dynamic) implementation

Forward
to controller

Host A

Dynamic path setup time/overhead
 Scalability issue, generic yet limited
flow entries (e.g., 1-4K)
 Synchronization, inconsistency, routing
loop, blackhole, ...

Can we pre-install all desired paths?

/1” \\\\
’2 ————— ~~\\
,c,mma *::~~_
Host A 2:_"_’____3. ___________ N ::_==§ Host B

« Eliminate dynamic path setup time/overhead

* Avoid synchronization/inconsistency, loop-free
forwarding, no routing blackhole ...

« Enable new services/applications 3

Can we pre-install all desired paths?

installation, not yet

Focus on path pre-
path selection!

Our answer: XPath

n k . 14

XPath Basic Idea

* Key observation motivating XPath

— |IP LPM tables in commodity switches becoming large
« E.g., Broadcom StrataXGS Trident-ll (144K)

* Natural idea of XPath
— Leverage IP LPM table to implement explicit path control

* One sentence describing XPath

— Explicitly identify a path with a path ID and pre-install all

Path ID

Outgoing port

these IDs using IP LPM tables.

pathi

Path ID | Outgoing port

Path 1D | Outgoing port

path2

pathi

pathi

path2

Fattree topology

path2

Routing table

ube topology

Routing table

HyperX topology

XPath’s Challenges

* What paths to consider?
— Cannot enumerate all possible paths, exponential.

— Observation: DCNs have desired paths, e.g.,
« k-port Fattree: k2/4 paths between two ToRs,
* n-layer BCube: (n+1) paths between two servers,
« Sufficient for high-bandwidth, fault-tolerance.

— XPath’s first step: pre-install all these desired paths.

* How to pre-install them?
— Desired paths # still very large
« E.g., over 232 for Fattree(64), 32-bit IP cannot express them!
« Opportunities:
— DCN is under control
— Two-step compression algorithm

16

Link-state network Internet

X
- X DaDy4 x_ToR Syitches
20 20(DaDya)x Servers

Fattree [Sigcomm’08]

4
4

;
)
D) @)

E w Fun,.gihle pooTof
N SEIVers Owning AAs

(e.g., 20/8)

VL2 [Sigcomm’09]

BCube [Sigcomm’09]

HyperX [SC’09]

17

XPath’s Two-step Compression Algorithm

Step 1: reduce unique IDs Step 2: compress prefixes

Paths =3 Path sets === Prefix entries

Path set Out port ID (bad) ID (good)

———
d PSo 0 0 0
— disjoint > P31 L L 2
w ps, 2 2 4
PS; 0 3 1
PS4 1 4 3
convergent PS5 2 |§5)
« ID Prefix Out port @
ID Prefix Out port
201 1 0,1 00~ 0
2 010 2 ’ .
divergent 0,3 0** 0 2,3 01 1
45 1% 2
4 100 1
5 101 2 18

XPath’s Two-step Compression Algorithm

Step 2: compress prefixes

Path sets == Prefix entries

—_—— __= -) Simple for only one switch,
-~ just sequential encoding

but, complex for DCN with many
switches, a good ID encoding on
one may be bad for another

19

XPath’s Two-step Compression Algorithm

Step 2: compress prefixes

Path sets == Prefix entries

Coordinated ID assignmentT
1. assign IDs to path sets on each
switch separately
/*optimal, but may cause ID
inconsistency, i.e., one path set
has multiple IDs */
2. correct inconsistent IDs with
each path set incrementally
/*choose one ID that leads to
minimal entries increase for
correction®/

TRemark: exist custom algorithm for tree-
based topologies, e.g., Fattree, VL2, etc.

20

Scalability Evaluation

1 ‘ . Original Max.
DCNs Nodes # Links # paths entries4
Fattree(4) 36 48 224 14
Fattree(8) 208 384 15,872 116
Fattree(16) 1,344 3,072 1,040,384 968
Fattree(32) 9,472 24,576 66,977,792 7,952
Fattree(64) 70,656 196,608 | 4,292.870,144 64,544
BCube(4. 1) 24 32 480 9
BCube(4, 2) 112 192 12,096 108
BCube(8, 2) 704 1,536 784,896 522
BCube(8, 3) 6.144 16,384 67,092,480 4,989
BCube(8, 4) 53,248 163.840 | 5,368,545,280 47,731
VL2(10, 4, 20) 219 240 900 30
VL2(20, 8, 40) 1,658 1,760 31,200 310
t VL2(40, 16, 60) 9,796 10,240 1,017,600 2,820
VL2(80, 64, 80) 103,784 107,520 130,969,600 49,640
VL2(100, 96, 100) 242,546 249,600 575,760,000 | 117,550
HyperX(1, 4, 20) 34 36 12 3
HyperX(2, 4, 40) 656 688 480 20
HyperX(3, 4, 60) 3,904 4,128 12,096 107
HyperX(4. 10, 80) 310,000 980,000 399,960,000 8,732
HyperX(4,16,100) | 6.619.136 | 8,519.680 | 17,179,607,040 36,164

TRemark: can be much smaller if apply tree-based custom algorithm

21

XPath application showcase #1:
Provisioned IOPS

File copy: X->Y 15GB = 30 files x 500MB/each
15K (IOPS) x 4KB (chunk size) x 8 = 500Mbps

700 .

—— XPath
S 600¢ ——ECMP
72]

@ 500
5
JiN| YL 5
j= 8
=T TPy =Py oo P3 B
(a) Remaining bandwidth on P I E 1
P>, P31s 300, 100, 100 Mbps. N i . . .
0 100 200 300 400 500 600 700 800 900
Average IOPS Time (sec)
XPath I 15274 I (b) Throughput and completion time of XPath and ECMP.
ECMP 4547
(c¢) Average IOPS.

We leveraged XPath to provide necessary network bandwidth to

achieve the provisioned I0PS. .

XPath application showcase #2:
Congestion-free update

Upgrade Switch A1 1
0.9f - bt
c 08F
S 0.7
T 0.6
% 0.5 —
x 041 o |
5 8-2' j —P1]]
2F | | —P2]|
RO N W S SO S B et
0 50 100 150 200 250 300 350 400
Time (seconds)
Path P1: T1 -> A1 -> T3, Time t1: move f3 from P2 to P3,
Path P2: T1 -> A2 -> T3, Time t2: move f1 from P1 to P2,
Path P3: T1 -> A3 -> T3. Time t3: move f1 from P2 to P1,

Time t4: move f3 from P3 to P2.

We leveraged XPath to assist network to accomplish congestion-free
update (e.g., zUpdate [Sigcomm’13]).

23

XPath application showcase #3:
Virtual network enforcement

i
F‘E:EIZ.Ilhjhp‘ \P3=400Mbps
Y | P
” =
P, =250Mbps \“-Pﬂ 200Mbps

" L
X a 2
=
(a) VDT Abstraction E
@_Embedding 2
=)
5
Al L gl A3 =

b |
e e :
. — =
|
T1 T2 T3
+!
X b il Q F

Py P PFq Py
ib) Physical Topology {c) Path

We leveraged XPath to accurately enforce VDC with bandwidth guarantees
(e.g., SecondNet [CoNEXT’10], Oktopus [Sigcomm’11], TIVC [Sigcomm’12], CloudMirror [Sigcomm’14]).

24

XPath application showcase #4:
Map-reduce data shuffle

-

[Jecmp| ¢ bbb
B XPath| { 1 i bbb

:

40.5 81 1215 162 2025 243 283.5 324 364.5 405
Data size(GB)

Shuffle ime (seconds)
& =)
- -

We leveraged XPath to explicitly arrange parallel paths
to speed up many-to-many Map-reduce data shuffle.

25

Related work

Topology-aware DCN routings (e.g., PortLand, VL2
[Sigcomm’(09])

— Small routing tables

— Rely on ECMP and VLB, not support explicit path control

Source routing (e.g., BCube [Sigcomm’(09])
— Software-based, not supported by most commodity DCN switches
— Variable header length vs fixed length in XPath

MPLS

— Label Distribution Protocol (LDP) for label assignment
— Exact Matching (EM) vs LPM in XPath

OpenFlow

— Dynamic path setup overhead

— Generic yet limited flow entries vs XPath leverages LPM
— XPath complements OpenFlow in explicit path control

— XPath can also leverage OpenFlow protocols for path selection
and failure handling

Summary

* Design:
— A concept of path ID to express an end-to-end path,
— An idea of pre-installing all desired paths into IP LPM tables,
— A two-step algorithm that translates the idea into practice.

« Application:
— Scalable, work on large DCNs,

— Practical, easy to implement, no modification on commodity
switches,

— Can be integrated into many applications and benefit them,
— Our other projects heavily rely on XPath

* Try it out @ http://sing.cse.ust.hk/projects/XPath

Thanks, Q&A

