
Exalt: Empowering Researchers to
Evaluate Large-­‐Scale Storage Systems

Yang Wang, Manos Kapritsos, Lara Schmidt,
Lorenzo Alvisi, and Mike Dahlin
The University of Texas at Austin

We need to evaluate our prototypes

Design	

Implementation

Evaluation

We need to evaluate our prototypes

Design	

Implementation

Evaluation

Industrial deployment:	

tens of PBs	

thousands of nodes

Researchers:	

hundreds of TBs	

hundreds of nodes

• Salus (Wang et al. NSDI 13): 108 servers 	

• Eiger (Lloyd et al. NSDI 13): 256 servers	

• Spanner (Corbett et al. OSDI 12): Hundreds of servers

How does one validate the
scalability of a storage system?

Extrapolation?

• Measure with a small cluster	

• Predict the behavior at full scale	

• Assumption: 	

– Resource consumption grows linearly with scale

CPU

Network

100 nodes

10%

5%

Extrapolate: The system can scale
to 1,000 nodes.

Scale

Resource
uHlizaHon

Extrapolation?

• Measure with a small cluster	

• Predict the behavior at full scale	

• Assumption: May not hold	

– Resource consumption grows linearly with scale

CPU

Network

100 nodes

10%

Scale

Resource
uHlizaHon

Can we run prototypes at full scale?

7

Processes

Machines

Can we run prototypes at full scale?

• Colocate multiple processes on one node

8

Processes

Machines

Can we run prototypes at full scale?

• Colocate multiple processes on one node

9

Processes

Machines

Problem:	

Limited I/O resource

Data content doesn’t affect system behavior

!

• Clients can write/read synthetic data	

!

• Abstract away data on I/O devices	

!

• Reduce resource requirement of each process

How to abstract away data?

• Discard data? (David, Agrawal et al. FAST 2011)	

– Doesn’t work with large-scale storage systems

Upper layer	

(Bigtable, HBase, …)

Lower layer	

(GFS, HDFS, …)

Data

Metadata

• Our approach: Compress data

Treat all bytes as data

Requirements of compression

• CPU efficient	

– General-purpose algorithms (e.g. Gzip) are CPU heavy	

!

• High compression ratio	

!

• Lossless compression	

!

• Be able to work with mixed data and metadata

Challenge: Data mixed with metadata

• System may add metadata	

• System may split data (possibly nondeteministically)

Metadata
Client data

Key: Locate metadata inside data

• Make data distinguishable from metadata	

–Flag: sequence of bytes that does not appear in metadata	

• Efficiently locate metadata: Follow sorted pattern	

–Marker: number of remaining bytes to the end

Flag Marker

Solution: Tardis data pattern

1016 1008 1000 ... 0

1KB data chunk and 4-byte flags and markers

Tardis

Tardis compression

Search for flag

Retrieve marker Skip 504 bytes

Search for flag again

504 ... 1016 1008

Retrieve marker
Skip 1016 bytes:	

Hit the end of chunk

504 ... 1016 1008

Tardis 1024：16

33,000 times faster than gzip

00

Tardis 512:512

Starting point Length

Original data

Compressed data

How to find an appropriate flag?

• Scan all metadata: Expensive	

!

• Observation: Tardis is only used for testing	

!

• A randomly chosen 8-byte flag works	

– HDFS	

– HBase

Testing with Tardis
• Run potential bottleneck nodes in real mode.	

• Run most nodes in emulated mode.

……

Clients

Process

Network

Bottleneck

Implementation

• Emulated devices: disk, network, and memory	

!

• Disk and network: Transparent emulation	

– Byte code instrumentation (BCI)	

– Usage: java -Xbootclasspath exalt.jar <original app>	

!

• Memory: Require code modification	

– None for HDFS; 71 LOC for HBase

Case studies

• Apply our emulator to HDFS and HBase	

– Measure their scalability	

– When we find a problem, analyze its root cause, and fix it	

!

• Testbed: 	

– Texas Advanced Computing Center (TACC)

Scalability of HDFS

Increase number of RPC threads

Put debug information	

 in tmpfs

Same as reported by
HDFS developers

Disable sync	

Put metadata in tmpfs

One problem of HDFS: Big files

HDFS performance degradation as file grows large.

long[] computeContentSummary(long[] summary) {

 long bytes = 0;
 for(Block blk : blocks) {
 bytes += blk.getNumBytes();
 }
 summary[0] += bytes;
 ……
}

Applying Exalt more broadly

• CPU intensive systems?	

–DieCast (Gupta et al. NSDI 2008)	

!

• Data sensitive applications/benchmarks?	

– Record (on a large testbed) and replay (on a small one)	

!

• The target system modifies data?	

– Ad-hoc solutions for de-duplication, encryption, etc

Conclusion

Industry

Researchers

https://code.google.com/p/exalt/

