High Throughput Data Center Topology Design

Ankit Singla, P. Brighten Godfrey, Alexandra Kolla

"How long must we wait until our pigeon system rivals those of the Continental Powers?"

- The Nineteenth Century, 1899

HURDArg

The need for throughput

Bandwidth Consumption

March 2011

[Facebook, via Wired]

May

2012

Many topology options ...

How do we design throughput optimal network topologies?

How do we design throughput optimal network topologies?

How close can we get to optimal network capacity?

How close can we get to optimal network capacity?

2 How do we handle heterogeneity?

- High capacity
 - Beat fat-trees by 25%+

- High capacity
 - Beat fat-trees by 25%+
- Easier to expand
 - 60% cheaper expansion

- High capacity
 - Beat fat-trees by 25%+
- Easier to expand
 - 60% cheaper expansion
- Routing and cabling are solvable problems

How close can we get to optimal network capacity?

How close can we get to optimal network capacity?

2 How do we handle heterogeneity?

Maximize the minimum flow

Maximize the minimum flow under random permutation traffic

Maximize the minimum flow under random permutation traffic

Bisection bandwidth ≠ throughput

- Bisection bandwidth ≠ throughput
- Near-worst case traffic patterns

How close can we get to optimal network capacity?

flows

flows • capacity used per flow

flows • capacity used per flow

 \leq total capacity

flows • capacity used per flow

 \leq total capacity

flows • throughput per flow • mean path length

 \leq total capacity

throughput per flow \leq

 $\sum_{\text{links}} \text{capacity}(link)$

flows • mean path length

Lower bound on mean path length

Distance # Nodes

Distance	# Nodes
I	6
2	6

Random graphs within a few percent of optimal!

Network Size

Random graphs within a few percent of optimal! Random graphs exceed throughput of other topologies How close can we get to optimal network capacity?

Very close!!

How do we handle heterogeneity?

Image credit: Legolizer (www.drububu.com)

Heterogeneity

Heterogeneity

High-degree switches

Number of Servers at Large Switches (Ratio to Expected Under Random Distribution)

Number of Servers at Large Switches (Ratio to Expected Under Random Distribution)

Number of Servers at Large Switches (Ratio to Expected Under Random Distribution)

Number of Servers at Large Switches (Ratio to Expected Under Random Distribution)

Interconnecting switches

Interconnecting switches

Interconnecting switches

Cross-cluster Links (Ratio to Expected Under Random Connection)

(Ratio to Expected Under Random Connection)

Explaining throughput

Upper bound

And constant-factor matching lower bounds in special case

Two regimes of throughput

Cross-cluster Links (Ratio to Expected Under Random Connection)

Two regimes of throughput

Cross-cluster Links (Ratio to Expected Under Random Connection)

Two regimes of throughput

(Ratio to Expected Under Random Connection)

A wide range of connectivity options

A wide range of connectivity options

A wide range of connectivity options

Bisection bandwidth ≠ throughput

A wide range of connectivity options

Bisection bandwidth ≠ throughput

Greater freedom in cabling

Quick recap!

How close can we get to optimal network capacity?

How close can we get to optimal network capacity?

How close can we get to optimal network capacity?

Improving a REAL heterogeneous topology

The VL2 topology

[Greenburg, Hamilton, Jain, Kandula, Kim, Lahiri, Maltz, Patel, Sengupta, SIGCOMM'09]

The VL2 topology

The VL2 topology

The VL2 topology

How do we design throughput optimal network topologies?

https://github.com/ankitsingla/topobench