
RC3���
Recursively Cautious Congestion Control	

Radhika Mittal, Justine Sherry,	

Sylvia Ratnasamy, Scott Shenker	

UC Berkeley	

 Roadmap	

•  Isn’t congestion control a solved problem?	

–  Conflicting goals of high throughput and friendliness solved through priorities	

•  Scope for performance gains	

–  Increases with increasing RTTxBW	

•  Design Details	

–  Additional packets sent backwards from the end using multiple low priority levels	

•  Simulation Results	

–  40-80% reduction in FCT over baseline TCP implementation	

•  Linux Implementation and Evaluation	

–  Simple modifications, agnostic to the underlying congestion control algorithm 	

•  Challenges and Future	

 Roadmap	

•  Isn’t congestion control a solved problem?	

–  Conflicting goals of high throughput and friendliness solved through priorities	

•  Scope for performance gains	

–  Increases with increasing RTTxBW	

•  Design Details	

–  Additional packets sent backwards from the end using multiple low priority levels	

•  Simulation Results	

–  40-80% reduction in FCT over baseline TCP implementation	

•  Linux Implementation and Evaluation	

–  Simple modifications, agnostic to the underlying congestion control algorithm 	

•  Challenges and Future	

 Short Flow Completion Time 	

•  “Being fast really matters. Users really respond to speed.”	

	

– 0.5 sec delay caused a 20% drop in traffic – Google	

	

– 2 sec slowdown changed queries/user by -1.8% and
revenue/user by -4.3% – Bing	

	

– 5 sec speedup resulted in a 25% increase in page views
and 7-12% increase in revenue – Shopzilla	

	

- James Hamilton’s Blog	

 RC3 in a nutshell	

Send additional packets from the flow 	

using low priority service (WQoS), 	

filling up only the spare capacity in the network	

	

•  40-80% Reduction in Flow Completion Time	

•  No harm to the regular high priority traffic	

•  Better use of Network Resources	

	

 Example Scenario	

Network Provider	

Receiver	
Sender	

 Network Provider Viewpoint	

What if I get a
burst of traffic in
peak hours or a
failure occurs?	

Must overprovision	

30-50% average link utilization	

Sender	

Network Provider	

Receiver	

 Endhost Viewpoint	

The network
might be very

congested!	

Must ramp-up cautiously	

Sender	

Network Provider	

Receiver	

 TCP	

Wasted Capacity	

Long FCT	
Slow Start	

Congestion Avoidance	

Link Fully Utilized	

 The Root Cause	

Two Goals of Congestion Control	

–  Fill the pipe for high throughput	

–  Do no harm to other flows	

	

Traditional Approach	

–  Single mechanism tries to balance the two conflicting goals	

	

RC3: Decouple these goals using priorities	

–  Fill the pipe at lower priority	

–  Do no harm at higher priority	

 RC3 in action	

Additional Packets at Low Priority Fill the Pipe	

Regular TCP at High Priority	

Flow Completes Sooner	

 Example: FCT with Slow Start	

	

	

	

	 	

	 	 	 	

	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

7 packets flow (with initial congestion window of 1 segment) 	

completes in 3RTTs under slow start	

	

 	

Sender	

Network Provider	

Receiver	

	 	

 Example: FCT with Slow Start	

	

	

	

	 	 	 	 	 	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	

7 packets flow (with initial congestion window of 1 segment) 	

completes in 3RTTs under slow start	

	

 	

Sender	

Network Provider	

Receiver	

	 	 	 	

 Example: FCT with Slow Start	

	

	

	

	 	

	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	

7 packets flow (with initial congestion window of 1 segment) 	

completes in 3RTTs under slow start	

	

 	

Sender	

Network Provider	

Receiver	

	 	 	 	 	 	 	 	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

 Example: FCT with RC3	

Remaining 6 packets sent at lower priority with the 1st packet	

Flow completes in 1RTT 	

 	

Sender	

Network Provider	

Receiver	

	 	 	 	 	 	 	 	 	 	 	 	 	 	

 Roadmap	

•  Isn’t congestion control a solved problem?	

–  Conflicting goals of high throughput and friendliness decoupled through priorities	

•  Scope for performance gains	

–  Increases with increasing RTTxBW	

•  Design Details	

–  Additional packets sent backwards from the end using multiple low priority levels	

•  Simulation Results	

–  40-80% reduction in FCT over baseline TCP implementation	

•  Linux Implementation and Evaluation	

–  Simple modifications, agnostic to the underlying congestion control algorithm 	

•  Challenges and Future	

 Theoretical Model	

Flow Size (N)
i	
 A×RTT	

%
 F

C
T

 R
e

d
u

ct
io

n
	

TCP:	 1	 RTT	

RC3:	 1	 RTT	

TCP:	 	 	 	 	 	 	 	 	 	 	 	 	 RTTs	 	 	 	 	 	 	 	 	 	 	 	 	

RC3:	 1	 RTT	

log(
N

i

) TCP:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 RTTs	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

RC3:	 1	 RTT	 +	

log(
A⇥RTT

i

)
N

A

N

A

Initial
Congestion

Window	

Available Capacity 	

A = (1-u)BW	

 Parameter Sensitivity: AxRTT	

TCP:	 1	 RTT	

RC3:	 1	 RTT	

TCP:	 	 	 	 	 	 	 	 	 	 	 	 	 RTTs	 	 	 	 	 	 	 	 	 	 	 	 	

RC3:	 1	 RTT	

log(
N

i

) TCP:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 RTTs	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

RC3:	 1	 RTT	 +	

log(
A⇥RTT

i

)
N

A

N

A

Flow Size (N)
i	

%
 F

C
T

 R
e

d
u

ct
io

n
	

A×RTT	

Higher A×RTT	

Initial
Congestion

Window	

Available Capacity 	

A = (1-u)BW	

 Roadmap	

•  Isn’t congestion control a solved problem?	

–  Conflicting goals of high throughput and friendliness decoupled through priorities	

•  Scope for performance gains	

–  Increases with increasing RTTxBW	

•  Design Details	

–  Additional packets sent backwards from the end using multiple low priority levels	

•  Simulation Results	

–  40-80% reduction in FCT over baseline TCP implementation	

•  Linux Implementation and Evaluation	

–  Simple modifications, agnostic to the underlying congestion control algorithm 	

•  Challenges and Future	

 WQoS Implementation	

Routers offer several layers of worse service	

– Use Priority Queues 	

– Support already present	

	

Packets carry priority (possibly) in DSCP field	

– Priority 0 – default (highest)	

– Priority 1, Priority 2, Priority 3,….	

 RC3 Design	

RC3 runs two parallel control loops	

	

–  TCP control loop	

Transmits packets that obey unmodified TCP logic at
highest priority 	

	

–  Recursive Low Priority (RLP) control loop	

Transmits additional packets at low priority 	

 What packets are sent at low priority?	

Minimum overlap between packets sent by the two
control loops for maximum gains	

– RLP starts from the last packet in buffer	

– Goes in reverse order	

	

0	
 1	
 3	
2	
 N	
N-1	
4	
 ….	
….	

High Priority	
 Low Priority	

TCP	 Control	 Flow	 RLP	 Control	 Flow	

 Single Flow	

Sender	
 Network Provider	
 Receiver	

 1	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 1	

Bottleneck 	

BWxRTT = 9 packets	
...	

 Multiple Flows?	

 1	
 1	
 1	

 0	

 1	
 1	
 1	
 1	
 1	

Sender 2	

Sender 1 	

Network Provider	
 Receiver	

 Router’s Priority Queue	

 0	
 1	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 1	
 1	
 1	

 Multiple Flows?	

 0	
 1	
 1	
 0	
 1	
 1	
 1	
 1	
 1	
Sender 1 	

Sender 2	

Network Provider	
 Receiver	

 Recursively Cautious Congestion Control	

•  Use multiple priority levels	

•  Send exponentially larger number of packets at

each priority level	

0	
 1	
 3	
2	
 N	
….	
....	
 N-X	
….	
N-10X	

Priority 1	
Priority 0	
 Priority 2	
Priority 3	

TCP	 Control	 Flow	 RLP	 Control	 Flow	

 RC3 Design: Quick Recap	

Two parallel control loops	

– Regular TCP	

– Recursive Low Priority (RLP)	

	

Minimum overlap between the two control loops	

–  Send low priority packets from the end in reverse

order	

	

Max-min fairness across flows	

–  Use multiple priority levels	

 Roadmap	

•  Isn’t congestion control a solved problem?	

–  Conflicting goals of high throughput and friendliness decoupled through priorities	

•  Scope for performance gains	

–  Increases with increasing RTTxBW	

•  Design Details	

–  Additional packets sent backwards from the end using multiple low priority levels	

•  Simulation Results	

–  40-80% reduction in FCT over baseline TCP implementation	

•  Linux Implementation and Evaluation	

–  Simple modifications, agnostic to the underlying congestion control algorithm 	

•  Challenges and Future	

 Simulation Setup	

•  Multi-hop Internet-2 network topology	

–  10 core nodes, 100 end hosts	

•  1Gbps bottleneck bandwidth	

•  40ms average RTT	

•  Baseline is 30% average link utilization	

•  Pareto flow size distribution with Poisson inter-arrival	

•  Initial Congestion Window of 4 segments	

	

 Comparing baseline simulation results with
the theoretical model	

Flow Size (N)

i	
 A×RTT	

%
 F

C
T

 R
e

d
u

ct
io

n
	

 Baseline	

Flow Size < 4MSS	

-  No RC3 packets sent	

Benefits because high
priority congestion is
reduced	

 Baseline	

Model does not
account for queuing

delays and drops 	

 Baseline	

Average Over
Flows	

Average Over
Bytes	

Regular TCP	
 0.135s	
 0.443s	

RC3	
 0.076s	
 0.114s	

% Reduction	
 43.54%	
 74.35%	

 Baseline	

 Comparing RC3 with other schemes	

 RC3 in comparison	

•  Increasing the initial congestion window	

	

•  Rate Control Protocol (RCP)	

	

	

	

	

 RC3 in comparison	

•  Increasing the initial congestion window	

•  Rate Control Protocol (RCP)	

	

	

	

	

	

 Comparison: Increasing InitCWnd	

Flow Size (N)
i	
 A×RTT	
i'	

TCP:	 1	 RTT	

RC3:	 1	 RTT	

TCP:	 	 	 	 	 	 	 	 	 	 	 	 	 RTTs	 	 	 	 	 	 	 	 	 	 	 	 	

RC3:	 1	 RTT	

log(
N

i

) TCP:	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 RTTs	 +	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	 	

RC3:	 1	 RTT	 +	

log(
A⇥RTT

i

)
N

A

N

A

%
 F

C
T

 R
e

d
u

ct
io

n
	

 Comparison: Increasing InitCwnd	

Short Flows penalized by
Increasing Initial

Congestion Window;
Benefit from RC3	

 Comparison: Increasing InitCwnd	

Long flows see
stronger gains with

RC3	

 Comparison: Increasing InitCwnd	

 RC3 in comparison	

	

•  Increasing the initial congestion window	

	

•  Rate Control Protocol (RCP)	

	

	

 Comparison: RCP	

RCP penalizes short
flows due to more

aggressive long flows
and explicit pacing	

 Comparison: RCP	

 Comparison: RCP	

Long flows see similar
performance gains	

 Stress Testing RC3	

•  Varying Link Utilization	

•  Varying RTTxBW	

•  More Topologies	

•  Different Workload	

•  Link Heterogeneity	

•  Random Losses	

•  Varying Priority Assignments	

•  Application Pacing	

•  Comparison with traditional QoS	

	

	

 Roadmap	

•  Isn’t congestion control a solved problem?	

–  Conflicting goals of high throughput and friendliness decoupled through priorities	

•  Scope for performance gains	

–  Increases with increasing RTTxBW	

•  Design Details	

–  Additional packets sent backwards from the end using multiple low priority levels	

•  Simulation Results	

–  40-80% reduction in FCT over baseline TCP implementation	

•  Linux Implementation and Evaluation	

–  Simple modifications, agnostic to the underlying congestion control algorithm 	

•  Challenges and Future	

 RC3 in Implementation	

	

•  Implemented in Linux 3.2 kernel	

	

•  121 additional LOC	

–  Sending Data Packets: 74 LOC	

–  Receiving Data Packets and Acks: 47 LOC	

	

•  Agnostic to the underlying TCP algorithm	

– Can be Tahoe, Reno, NewReno, BIC, CUBIC etc	

 Evaluation	

	

	

	

 Evaluation	

	

	

	

Low priority out-of-order
packets processed by slow path	

High per-packet CPU overhead	

 Leveraging NIC Offloading	

•  TCP Segmentation Offload (TSO)	

–  Multiple segments processed by sender stack as a single chunk	

	

•  Large Receive Offload (LRO)	

–  Multiple segments received aggregated into a single chunk	

	

•  RC3 supports offloading to reduce CPU overhead	

–  Logically treat each chunk as a single packet at the sender	

–  This allows aggregation of segments at the receiver 	

	

	

	

Leveraging NIC Offloading	

	

	

 Roadmap	

•  Isn’t congestion control a solved problem?	

–  Conflicting goals of high throughput and friendliness decoupled through priorities	

•  Scope for performance gains	

–  Increases with increasing RTTxBW	

•  Design Details	

–  Additional packets sent backwards from the end using multiple low priority levels	

•  Simulation Results	

–  40-80% reduction in FCT over baseline TCP implementation	

•  Linux Implementation and Evaluation	

–  Simple modifications, agnostic to the underlying congestion control algorithm 	

•  Challenges and Future	

 Where RC3 is of little help…	

•  Low delay bandwidth product	

•  Very heavily utilized links	

•  Small queue buffer size at the bottleneck	

	

•  Application pacing	

	

	

 Deployment Concerns	

•  Partial Priorities Support	

•  Middleboxes [Honda et. al. 2011, Flach et al 2013]	

•  Wireless	

	

	

 Future	

•  Performance gains increase with BWxRTT	

– Likely to increase with time	

	

•  Futuristic datacenter bandwidth of 100Gbps	

– 45% reduction in average FCT (over flows)	

– 66% reduction in average FCT (over bytes)	

	

 Summary	

•  Send additional packets from a flow using several
layers of low priority service 	

•  Uses only the spare capacity in the network
without affecting the regular traffic	

	

•  Gives 40-80% reduction in FCTs over baseline TCP	

	

	

	

 Thank you!	

•  Send additional packets from a flow using several
layers of low priority service 	

•  Uses only the spare capacity in the network
without affecting the regular traffic	

	

•  Gives 40-80% reduction in FCTs over baseline TCP	

	

http://netsys.github.io/RC3/	

	

	

	

	

 Back Up!	

 What about dropped low priority packets?	

•  Low priority packets are transmitted only once	

•  Losses recovered by TCP control loop 	

•  SACK indicates which segments are missing
(optional)	

	

	

 Throughput	

 Varying Link Load	

 Varying RTTxBW	

 Drop Rates in Baseline Simulations	

	

	

Network

Load	

Drop %	

(Regular

TCP)	

Drop % (RC3)	

High
Priority	

Low
Priority	

Total	

0.3	
 0.5	
 0.3	
 13.15	
 13.45	

0.5	
 0.84	
 0.58	
 28.46	
 29.04	

0.7	
 1.42	
 1.09	
 36.84	
 37.94	

 Varying Loss Rates	

 Topologies	

 Workload	

 Link Heterogeneity	

 Application Pacing	

 Priority Levels	

 Some Queues DropTail	

