Warranties
for Faster Strong Consistency

Jed Liu Tom Magrino Owen Arden
Michael D. George Andrew C. Myers

11 USENIX Symposium on Networked Systems Design and Implementation
4 April 2014

Consistency vs. scalability

Traditional RDBMSes Today’s “web-scale” systems
« Strong consistency « Weak (eventual) consistency
- ACID guarantees « Offer better scalability
» Simple to program . Difficult to program
« Don't scale well — Consistency failures affect
higher software layers

unpredictably

Warranties help bridge the gap

Jed Liu — Warranties for Faster Strong Consistency

Consistency: how strong?

« Strict serializability [Papadimitriou 1979]
— Behaviour = sequential ordering (serializability)
— Order of non-overlapping transactions preserved
— Ensures transactions always see most recent state
 External consistency [Gifford 1981]

— Serialization consistent w/ wall-clock time of
commits

Jed Liu — Warranties for Faster Strong Consistency

W,

2 Warranties

RRAY

Warranty — a time-limited assertion about system state
— State warranty — state of an object
acct == {name: “Bob”, bal: 42} until 2:00:02 p.m. (2 s)
— Computation warranty — result of a computation
flight.seatsAvail(AISLE) >= 6 until 2:00:05 p.m. (5 s)

— Duration can be set automatically, adaptively
« Each warranty defended to ensure assertion remains true
— Assume loosely synchronized clocks (e.g., NTP)

Warranties allow commits to avoid communication
while guaranteeing strict serializability and external consistency

Jed Liu — Warranties for Faster Strong Consistency

Distributed OCC refresher

Q compute

‘ ‘ ‘ Clients compute on

optimistically cached data

e Scalable
* Strongly consistent
e Distributed transactions

read

\

‘ Storage nodes (stores)
. . ‘ store persistent data

Jed Liu — Warranties for Faster Strong Consistency

Distributed OCC refresher

C ' Clients compute on

optimistically cached data

2PC:
read commlt erte commlt 1 prepare
prepare prepare 2 commit

Storage nodes (stores)
store persistent data

Jed Liu — Warranties for Faster Strong Consistency

Distributed OCC refresher

Clients compute on
optimistically cached data

<
<
<
<

////v * Popular objects usually read more

Bottleneck at stores often than written
for popular objects * Client’s copy likely up to date
* Why not guarantee freshness of cache?

‘ Storage nodes (stores)
‘ store persistent data

o0 oV

Jed Liu — Warranties for Faster Strong Consistency

Warranties avoid communication

Q compute

‘ ‘ Clients compute on

optimistically cached data

read

‘ Storage nodes (stores)
‘ store persistent data

Jed Liu — Warranties for Faster Strong Consistency

Warranties avoid communication

optimistically cached data

‘ ‘ Clients compute on

Single-store optimization:
one-phase commit

write
commit

Warranties can
eliminate read prepares

Storage nodes (stores)
store persistent data

Jed Liu — Warranties for Faster Strong Consistency

Warranties avoid communication

Clients compute on

b optimistically cached data

commit

i
G

Single-store optimization:

, one-phase commit
Warranties can ‘ P

eliminate read prepares o
Read-only optimization:

zero-phase commit

‘ Storage nodes (stores)
‘ ‘ store persistent data

Jed Liu — Warranties for Faster Strong Consistency

Using expired warranties

0 ' Clients compute on

optimistically cached data

Single-store optimization:

Expired warranties can .
one-phase commit

extended

read imisti
. warranty be used optimistically
commit -
Read-only optimization:
: State warranties generalize OCC - i
revalidate g zero-phase commit

(zero-duration warranties = OCQC)

and extend x

‘ Storage nodes (stores)
‘ store persistent data

Jed Liu — Warranties for Faster Strong Consistency

Warranties are related to read leases

o Leases [GC89] give time-limited rights to resources

— e.g, use IP address, read object, write object

— Must have lease to perform corresponding action

« Can relinquish lease when no longer needed
— Allow outsourcing of consistency to clients
« Warranties: a shift in perspective
— Time-limited assertions: “What's true in the system?”
— Some overlap: state warranties similar to read leases

— Naturally generalize to computation warranties

Jed Liu — Warranties for Faster Strong Consistency

Memoized methods

One lightweight way to present computation
warranties in language

—e g extend Java' memoized = issue warranties
) Q’)

on method result

Memoized | memoized boolean seatsAvail(SeatType t, int n) {

method | return seatsAvail(t) >=n;
declaration }

for (Flight f : flights)
if (f.seatsAvail(AISLE, 3))
displayFlights.add(f);

Client code
(ordinary Java)

Jed Liu — Warranties for Faster Strong Consistency

Using computation warranties

A
Client f.seatsAvail(AISLE, 3) == true} ° 0
~ O
f.seatsAvail(AISLE, 3) == ?

4)

Store @f.seatsAvail(AlSLE, 3) == true} for (Flight f : flights)
- if (f.seatsAvail(AISLE, 3))
~ 4 displayFlights.add(f);

Jed Liu — Warranties for Faster Strong Consistency

Proposing computation warranties

A
Client f.seatsAvail(AISLE, 3) == true} ° 0
~ O
f.seatsAvail(AISLE, 3) == true
commit
Y
4)
Store @f.seatsAvail(AlSLE, 3) == true] for (Flight f : flights)
i if (f.seatsAvail(AISLE, 3))
~ 4 displayFlights.add(f);

Jed Liu — Warranties for Faster Strong Consistency

Warranty dependencies

« Computation warranties can depend on other
warranties

Warranty dependency tree

memoized int () { - ()

return g() + 1; : i
g() ! computation warranties l

}
™~ g()
memoized int g() { ... } / l \

state warranties

Jed Liu — Warranties for Faster Strong Consistency

Twitter analytics example

« Who are the top N most- Warranty dependency tree
followed Twitter users? compute —_
— Unlikely to change often, \ top(N, 'J)@
though followers change / \
frequently top(N | ko) top(N, koj@

top(N ik, @ top(N,k,, k@
. Divide & conquer

implementation

A

. users
— Allows incremental

computation of new
warranties

Jed Liu — Warranties for Faster Strong Consistency

Twitter analytics example

« WHho are the top N momt Warranty dependency tree
followed Twitter usery’ ——

heguently Q
« v &0 Not all methods memoizable | - Q
implement alion LA A0 4 v

Alran ww rerreet o
gt ot o of new
T e

Jed Liu — Warranties for Faster Strong Consistency

Not all methods memoizable

 Behaviour should be identical regardless of
whether warranty is used

« Memoized computations must:
— Be deterministic

— Have no observable side effects

. i.e, cannot modify pre-existing objects

Jed Liu — Warranties for Faster Strong Consistency

Not all methods memoizable

« Behaviour should be Wdentical regardiess of
whether warranty s used /@Z

Let’s memoize all the other methods! |

o Memowzed computations must

Be determenntx @
Ma Warranties aren't free:
* Creation & bookkeeping have cost
* Need to be defended against writes
that invalidate them

Jed Liu — Warranties for Faster Strong Consistency

Defending state warranties

« Writes delayed until conflicting warranties expire

1. Client sends update to store

Client ‘ ‘ 2. Store notices conflicting warranty

* Write is delayed

A * Client notified of delayed commit
3. Update commits when warranty
commit commit at 4 p.m. expires
Y
4 : N
|
Store I
@
\ L
21 %) expires PenFllng
\ ‘ writes

% ,j,:‘
35 25 74
Z. 310 7 4 4 p.l I I.

Jed Liu — Warranties for Faster Strong Consistency

Defending computation warranties

« Writes delayed until conflicting warranties expire

Warranty dependency tree

Client v Q ‘ top(N,i,k,)

A
commit commit at 4 p.m.
P \ 4
.
Store c ‘
[top(N,i,k1,i= @

\- & fb"
Pending

e , -

w4 s expires WrItes

d

35 30 25,74 4 p.m.

Jed Liu — Warranties for Faster Strong Consistency

Defending computation warranties

« Writes delayed until conflicting warranties expire

Warranty dependency tree

Client v Q ‘ top(N,i,k,)
X 1

commit committed
P 4
4
Store c ‘
[t (N,i ki) ==
N Sk @"‘.

Pending

expires Writes
4 p.m.

Jed Liu — Warranties for Faster Strong Consistency

Warranty durations

« Warranties can delay writes

 Key to performance: warranty durations
— Long enough to be useful
— Short enough to keep writers from blocking

— Automatic, adaptive, online mechanism

« Analytical model driven by run-time measurements

Frequently used & seldom changed » long warranties

short warranties
(if any at all)

Jed Liu — Warranties for Faster Strong Consistency

Frequently changes or seldom used »

Trade-offs

« Unavoidable trade-off between readers & writers

— Read performance improved, but writes delayed

OCC ‘ Pessimistic locking
writers abort readers Warranties writers wait for read locks
writers wait for
warranties to expire

Jed Liu — Warranties for Faster Strong Consistency

Implementation

« Extended Fabric [SOSP 2009]
— Secure distributed object system

— High-level programming model

« Presents persistent data as ordinary language-level objects

« Support for both state & computation warranties

— Fabric language extended with memoized methods

Fabric 0.2.1 44 kLOC
Warranties extension 7 kLOC added or modified

Jed Liu — Warranties for Faster Strong Consistency

Evaluation: state warranties

« Multiuser OO7 benchmark

— Models OODBMS applications
— Heavyweight transactions (~460 objects involved)

« Changed to model popularity of reads (power law)

— Increases read/write contention (harder to scale)

« Ran on Eucalyptus cluster
— Stores: 2 cores, 8 GB memory

— Clients: 4 cores, 16 GB memory

Jed Liu — Warranties for Faster Strong Consistency

* 2% writes

Scalablllty * 36 clients

3000 -B-Fabric -#«=Warranties

—~ ~400 tx/s per additional store
<L
e
~— 2000
S
Q
<
50
>
o
=
2 1000 —&
= Little improvement:
bottlenecked at stores
0 w/ popular objects
1 3 5 7
Stores

Jed Liu — Warranties for Faster Strong Consistency

Effect of read/write ratios Lo

3000 -B-Fabric -#«=Warranties

Median write delay: 0 ms

o 70-80% of writes commit immediately
>

=2000

>

Q

-

o0

>

o
S 1000 F

X

gV

= + ——

0

0 2 5 10
Write percentage

Jed Liu — Warranties for Faster Strong Consistency

Evaluation: computation warranties

top(N,i,j)

« Twitter benchmark N
N
_ top(N,i,k,) top(N,ky,ko)
1,000 users AN AL
— 98% reads (compute top-5 users)
— 2% writes (follow/unfollow random user)
Median 95th percentile
Throughput (tx/s) latency (ms) write delay (ms)
Fabric 17 £ 4 568 + 354 —
State warranties 26 £ 5 1239 + 455 623 + 274
Comp. warranties 343 £ 10 122 16 + 4

Speedup by giving application-specific consistency

Jed Liu — Warranties for Faster Strong Consistency

Evaluation: Cornell CS CMS

Web app for managing assignments & grading

Ported to Hibernate (JPA implementation)
— Hibernate: popular ORM library for building web apps
— Ran in “optimistic locking” mode

- Emerging best practice

Also ported to Fabric

Workload based on 3-week trace
from production CMS in 2013

Jed Liu — Warranties for Faster Strong Consistency

CMS throughput

7000 W Hibernate W Fabric m Warranties

6000

4000
3000
2000
1000
0 ——
1

Max throughput (tx/s)

Stores

Jed Liu — Warranties for Faster Strong Consistency

CMS scalability

7000 M Fabric B Warranties
6000
2 5000
2 4000 1
i -
%
o 3000
S
% 2000
=
1000
0
1 3

Stores

Jed Liu — Warranties for Faster Strong Consistency

Related work

Promises [JFG 2007] generalize leases
— Specify resource requirements w/ logical formulas
— Given time-limited guarantees about resource availability

Spanner [CDE+ 2012] — distributed transaction system w/ strict serializability

— Lower level programming model, no computation caching

TxCache [PCZML 2010] - application cache w/ transactional consistency

— Weaker consistency model

Escrow transactions [O’'Neil 1986]

— Transactions can commit when predicate on state is satisfied

— Focused on allowing updates to commit more frequently

Warranties is the first to provide strong consistency
by defending client caches

Jed Liu — Warranties for Faster Strong Consistency

Warranties

for Faster Strong Consistency

Jed Liu Tom Magrino Owen Arden Michael D. George Andrew C. Myers

'l
S

Cornell University
Department of Computer Science

NP
oy ""‘
%)
(i)

s

FABRIC
1

Warranties help bridge the gap between

consistency and scalability

— Defend client caches

— Commits avoid communication
— Strict serializability

— External consistency

