Bolt: Data management for
connected homes

Trinabh Gupta®*, Rayman Preet Singht
Amar Phanishayee, Jaeyeon Jung, Ratul Mahajan

*The University of Texas at Austin
tUniversity of Waterloo

Microsoft Research



Number of sensors, smart devices is
= growing

Automotive sensors Sensors and devices for
home automation



Need a new data management system for
connected homes
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Applications generate time-series data and
retrieve based on time windows
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Requirement: Support time-series data



Applications access data from multiple
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Requirement: Leverage cloud servers for availability



Applications share sensitive home data
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Requirement: Ensure confidentiality, integrity



Recap of data management
requirements

e Support time-series data with efficient time and
tags based retrieval

* Leverage reliable and available cloud storage to
facilitate sharing

* Ensure data confidentiality and integrity



Existing systems are not suitable

_App | —

Query (start-time, end-time, ...)

Time series data processing [OpenTSDB]
* Do not maintain confidentiality or integrity of data

Exposes

Lapp ] —> key-value API

Secure systems using untrusted storage
[SUNDR 04, Depot 10, SPORC 10]

* Do not support time-series data



Outline

* Applications requirements and motivation

* Design of Bolt
* Key mechanisms to support requirements

* Evaluation
* Feasibility of using Bolt for three applications



Recall the data management requirements
of apps for connected homes

Support Leverage Ensure data
time-series, cloud confidentiality,
tagged data storage integrity

How can we address these
requirements simultaneously?



Straw man: Store data in a cloud DB
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* Cloud untrusted for data confidentiality and integrity
e Cloud untrusted for computations (e.g., hamming distance, image similarity)

Design guidelines:

1. End-points perform: encryption/decryption, data
integrity checking, query evaluation

2. Use cloud providers for (just) storage



Straw man: Using secure key-value
datastores
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Block store
(key-value API)

* Need support for temporal queries.

* High per-data-record overhead.
* Encryption/decryption, integrity metadata / checks
 Remote storage calls and transfers

* Individual data records do not compress well.

Design guideline: Batch contiguous data records, leverage
workload query pattern



Overview of Bolt

Stream (append-only) abstraction
* Records: <timestamp, [tag], value>

Query (start-time, end-time, tag)

Leverage cloud storage
* Cloud resources untrusted for compute and storage
 No cloud query engine with computation at endpoints

Security and privacy guarantees
* Confidentiality, Tamper evidence, Freshness



Bolt Stream: Index + Log of <ts, tag,

val>
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Batching data for efficiency
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Reads use the index to download
~ chunks
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Lookups and computation are performed locally at home



Batching and prefetching on reads
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Query patterns
* Fixed Window

* Sliding Window
* Growing Window
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Reduces number of remote calls,
pre-fetches data for subsequent queries.



Secure sharing: Decentralized access

control
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Addressing challenges in
decentralized access control

* Potentially many encryption keys per stream.
Solution: Hash-based key regression (ru et al. NDSS 06]

e Key server trusted to maintain principal -> public key
mappings.

e Key server trusted to prevent rollback of key.
Possible solution: Replicated key server



Outline

* Applications requirements and motivation

* Design and key mechanisms of Bolt
e Chunking
e Separation of Index from data
e Decentralized access control

* Segmentation for memory efficiency, key change
(paper)

* Evaluation
* Feasibility of using Bolt for real-world applications



Implementation
* Integrated with HomeQOS
 labofthings.codeplex.com @

e Supports Windows Azure and Amazon S3

* Integrated Bolt with 5 applications
e 2 of these done by other developers
* In use by HCI Researchers at MSR and Univ. of Michigan



What are the overheads In
Bolt?

e Baseline: Flat file
* No support for temporal range queries, security

* Experiment to understand
* Query time breakup
e Storage overhead



Overheads in Bolt

Append (Temp = 22, Val = 0.7)

Lookup, Update Serialize, compress, hash Upload data,
index write data encrypt, chunks index

<1% ~ 20 % <1% ~75%

* Lookup during queries has < 1% overhead.
* Encryption, hashing overhead is negligible.

* Index storage adds
* 30% for datavalue sizes of 10 bytes
* < 1% for datavalue sizes of 1KB

Refer to paper for detailed microbenchmarks



Energy Data Analytics
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Prefetching in chunks improves query
latency
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Current query retrieves data for subsequent
query’s temperature values



Applications share sensitive home data
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Measure query time across 10 homes looking at
data from last 10 hours



Batching data in chunks improves query
latency
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Larger chunks result in fewer remote calls & RTTs.



Bolt's data storage efficiency

________Bolt___OpenTSDB

Preheat 1.5 8.2

DNW 37.9 212.4

EDA 4.6 14.4
Data in MBs

Bolt is 3-5x more space efficient than OpenTSDB.



Summary

* Emerging class of applications for smart homes with a
new set of data management requirements.

* Bolt addresses these efficiently by leveraging the
nature of queries in this domain.

* Despite providing more than OpenTSDB (security
guarantees), Bolt is up to 40x faster while requiring 3—
5x less storage space.

Code: labofthings.codeplex.com



