Bolt: Data management for
connected homes

Trinabh Gupta®*, Rayman Preet Singht
Amar Phanishayee, Jaeyeon Jung, Ratul Mahajan

*The University of Texas at Austin
tUniversity of Waterloo

Microsoft Research

Number of sensors, smart devices is
= growing

Automotive sensors Sensors and devices for
home automation

Need a new data management system for
connected homes

T Energy Data Neighborhood
[PreHeat][D|g|SW|tch] [Anaglzl/ﬁcs] [gWatch]

[Ubicomp 2011] [Medical Systems

2011] [Energy and [CSCW 2013]

Building 2012] Apps

{ HomeOS } {MiCasa Verde} Platforms

Devices and
sensors
for the home

Applications generate time-series data and
retrieve based on time windows

e
. ez
L (prebeat

Day 1

|dentify days with

S

~ Slot96 closest occupancy
~ Slotl pattern (least

~ Slot2

Occupancy ~ hamming distance)
Sensors - '
5 to predict future
slot
o™
a

Thermostat

Requirement: Support time-series data

Applications access data from multiple

Time Attributes Value S | g,
Energy Data f=—\
Mon, 1 AM | Temp = 20°C 0.9 , <%
Analytics

Mon, 2 AM | Temp=20°C | 1.1 -
Energy | Mon, 3 AM | Temp =22°C 12 Run by utility compan‘\? TN
|

Meter | Mon, 4 AM | Temp=22°C | 1.2 l

Data from
neighboring
energy meters

35
Perform

analysis even
when homes
are offline

**1'" Analyze and compare

L energy usage

204 /" Avg. for this home

15

sl | 2.
et /Avg. of neighboring homes

0050 5 0 5 10 15 20 25 30
External Temperature (°C)

Hourly Electrical Energy Use (kWh/h)

Requirement: Leverage cloud servers for availability

Applications share sensitive home data

ég /\(k Time ‘w' alue
== Sun, 11 AM | humans m
i Mon, 1 PM | animal %

Perform image DNW] Tue, 3PM | car, red @

similarity matching
/Nn a car in the last 24 hours?

]]

Neighbor Neighbor

Requirement: Ensure confidentiality, integrity

Recap of data management
requirements

e Support time-series data with efficient time and
tags based retrieval

* Leverage reliable and available cloud storage to
facilitate sharing

* Ensure data confidentiality and integrity

Existing systems are not suitable

_App | —

Query (start-time, end-time, ...)

Time series data processing [OpenTSDB]
* Do not maintain confidentiality or integrity of data

Exposes

Lapp] —> key-value API

Secure systems using untrusted storage
[SUNDR 04, Depot 10, SPORC 10]

* Do not support time-series data

Outline

* Applications requirements and motivation

* Design of Bolt
* Key mechanisms to support requirements

* Evaluation
* Feasibility of using Bolt for three applications

Recall the data management requirements
of apps for connected homes

Support Leverage Ensure data
time-series, cloud confidentiality,
tagged data storage integrity

How can we address these
requirements simultaneously?

Straw man: Store data in a cloud DB

App —_
I

Query (start-time, end-time, ...)

* Cloud untrusted for data confidentiality and integrity
e Cloud untrusted for computations (e.g., hamming distance, image similarity)

Design guidelines:

1. End-points perform: encryption/decryption, data
integrity checking, query evaluation

2. Use cloud providers for (just) storage

Straw man: Using secure key-value
datastores

Record 1

App

/\(k Record 2
. Record 3
[1 - o

. _ Record 4
Logic for security ’
Data records [SUNDR 04, Depot 10, SPORC 10]

Block store
(key-value API)

* Need support for temporal queries.

* High per-data-record overhead.
* Encryption/decryption, integrity metadata / checks
 Remote storage calls and transfers

* Individual data records do not compress well.

Design guideline: Batch contiguous data records, leverage
workload query pattern

Overview of Bolt

Stream (append-only) abstraction
* Records: <timestamp, [tag], value>

Query (start-time, end-time, tag)

Leverage cloud storage
* Cloud resources untrusted for compute and storage
 No cloud query engine with computation at endpoints

Security and privacy guarantees
* Confidentiality, Tamper evidence, Freshness

Bolt Stream: Index + Log of <ts, tag,

val>

\ tsl, tagl, val]

k ts2, tagl, val)

\ ts3, tag2, val]

ts4, tagl, val

ts5, tag2, val

\ ts6, tag2, val]

t7, tagl, val

: ts8, tagl, val]
Stream Log (Disk)

[tagl —{ ts1, O1 { ts2, 02 [ts4, 04[ts7, 07[ts8, 08 }

[tag2)—{ ts3, 03 I ts5, O5 [ts6, 06 }

Tag Offsets Sorted by time
Stream Index (In memory, Disk backed)

Batching data for efficiency

[R .
| Compressed | = Remote Log
)
S Encrypted © & Index
S data
=] | Compressed
N = E ted
A = ncryp
ED T Compressed = <& S data
)
/\(k = Encrypted ©
< L ~
. O data = Compressed
C = 3 Encrypted
™ - P o data
< Compressed A
2 Encrypted T ™M Compressed
’ 7 =
© S Encrypted
Stream Log and Index S data

[Encrypted Index] [Encrypted Index

Has
Index

Improves storage and transfer efficiency.

A

Metadata

)
Signed
Hash
of
Hashl,
Hash?2,
Hash3
&
Index
Hash

—

Amortizes cost of compression, encryption, and hashing

Reads use the index to download
~ chunks

O

App

[Encrypted Index
Query (3 AM to 5AM, Temp = 22)
—i
) + | Compressed
[Temp =22 —{ 1AM, O1 [3AM, 03[4AM, O4] = Encrypted
o | S data
Temp =24 2AM, 02 | 5AM, 05
@\
Tag — Offsets Sorted by time = Compressed
Index optimized to lookup tags, timestamps 2 Encrypted
@) data
2 Compressed
S Encrypted
e
Compressed Compressed O data
Encrypted Encrypted Stream Log

Chunk 2 Chunk 3

Lookups and computation are performed locally at home

Batching and prefetching on reads

N
1 €<

Query patterns
* Fixed Window

* Sliding Window
* Growing Window

App

Compressed
Encrypted
data

Compressed
Encrypted

data

Chunk 3 Chunk2 Chunk1l

Compressed
[Encrypted }
data
Stream Log

Reduces number of remote calls,
pre-fetches data for subsequent queries.

Secure sharing: Decentralized access

control
Applw App2
/X | Grant/Revoke
i Access i
Owner Reader

Key Server

Stream Name | Key Info

Homel/Appl | Enc(Appl, Key-1)
Enc(App2, Key-1)

Lazy revocation: | Enc(Appl, Key-2)
[Cepheus 09]

Enc(Appl, Kc;y-N)

Addressing challenges in
decentralized access control

* Potentially many encryption keys per stream.
Solution: Hash-based key regression (ru et al. NDSS 06]

e Key server trusted to maintain principal -> public key
mappings.

e Key server trusted to prevent rollback of key.
Possible solution: Replicated key server

Outline

* Applications requirements and motivation

* Design and key mechanisms of Bolt
e Chunking
e Separation of Index from data
e Decentralized access control

* Segmentation for memory efficiency, key change
(paper)

* Evaluation
* Feasibility of using Bolt for real-world applications

Implementation
* Integrated with HomeQOS
 labofthings.codeplex.com @

e Supports Windows Azure and Amazon S3

* Integrated Bolt with 5 applications
e 2 of these done by other developers
* In use by HCI Researchers at MSR and Univ. of Michigan

What are the overheads In
Bolt?

e Baseline: Flat file
* No support for temporal range queries, security

* Experiment to understand
* Query time breakup
e Storage overhead

Overheads in Bolt

Append (Temp = 22, Val = 0.7)

Lookup, Update Serialize, compress, hash Upload data,
index write data encrypt, chunks index

<1% ~ 20 % <1% ~75%

* Lookup during queries has < 1% overhead.
* Encryption, hashing overhead is negligible.

* Index storage adds
* 30% for datavalue sizes of 10 bytes
* < 1% for datavalue sizes of 1KB

Refer to paper for detailed microbenchmarks

Energy Data Analytics

= N\ Time Attributes Value

Energy Data| . = ; Mon, 1AM | Temp=20°C | 0.9
Analytics | Mon, 2 AM | Temp=20°C | 1.1

Tue, 4 AM | Temp =22°C 1.2

.ol Analyze, compare Energy reading
25 | energy usage for last 30 days
aol when external
el temperature
was X°C

101 Avg. for this home
T N R e

Hourly Electrical Energy Use (kWh/h)

" A/Avg. of neighboring homes
0.0

15 10 5 0 5 10 15 20 25 30
External Temperature (°C)

Measure time taken to compare energy usage
during last 30 days

Prefetching in chunks improves query
latency

W Bolt ™ OpenTSDB
10000

1129

1000

100

Retrieval Time (Seconds)
[
o

1 10 100
Number of homes

Current query retrieves data for subsequent
query’s temperature values

Applications share sensitive home data

d /\(k Time ‘w' alue |

| Sun, 11 AM | humans m

B WO i Mon, 1 PM | animal %
Perform image DNW] Tue, 3PM | car, red &

similarity matching
/Nn a car in the last 24 hours?

]]

Neighbor Neighbor

Measure query time across 10 homes looking at
data from last 10 hours

Batching data in chunks improves query
latency

~N

Bolt

(o))}

(92

OpenTSDB

OpenTSDB

N W b

Retrieval Time (Seconds)

=

o

100KB 1MB
Chunk Size

Larger chunks result in fewer remote calls & RTTs.

Bolt's data storage efficiency

________Bolt___OpenTSDB

Preheat 1.5 8.2

DNW 37.9 212.4

EDA 4.6 14.4
Data in MBs

Bolt is 3-5x more space efficient than OpenTSDB.

Summary

* Emerging class of applications for smart homes with a
new set of data management requirements.

* Bolt addresses these efficiently by leveraging the
nature of queries in this domain.

* Despite providing more than OpenTSDB (security
guarantees), Bolt is up to 40x faster while requiring 3—
5x less storage space.

Code: labofthings.codeplex.com

