
TOWARD PREDICTABLE PERFORMANCE IN 

SOFTWARE PACKET-PROCESSING PLATFORMS 

Mihai Dobrescu, EPFL 
Katerina Argyraki, EPFL 
Sylvia Ratnasamy, UC Berkeley 



Programmable Networks 
2 

 Industry/research community efforts  
 Easily deploy new services 
 Test research ideas 

 

 Software packet processing  
 General purpose hardware 
 Familiar programming environment 

 

Extensible network functionality 



Problem: Unpredictable Performance 

 Resource contention 
 Caches, memory controllers, buses 
 Performance interference 

 

 Software packet-processing systems [Dobrescu’09, Han’10] 

 High performance 
 Same processing for all packets 

3 

Goal: software packet processing with  
predictable performance 



System Overview 
4 

IP forward 

IP forward 

IP forward 

Encryption 

Statistics 

input traffic packet processing output traffic 

General purpose server 

Filtering 

Contention for 
shared resources 



Is This Hard? 

 Yes, in general-purpose context 
 Math models to predict contention 
 Contention-aware job placement 

 

 In packet-processing context? 

5 



Our Contribution 

 
1. It is feasible to build a packet-processing platform 
with predictable performance using simple techniques. 
 
2. Contention-aware job placement does not bring 
significant benefit to the overall performance. 

6 



Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 

7 



System Overview 
8 

IP forward 

IP forward 

IP forward 

Encryption 

Statistics 

input traffic packet processing output traffic 

General purpose server 

Filtering 



Workloads 
9 

Application Main functionality Characteristics 

IP IP routing, 128k entries L3 cache intensive 

MON Monitoring, 100k flows L3 cache intensive 

FW Firewall, 1000 rules L2 cache intensive 

RE Redundancy elimination Memory intensive 

VPN Encryption CPU intensive 

Synthetic Random cache reads Cache/memory/CPU 

Representative set of realistic applications 



Setup 

 Linux + Click 

 Commodity Intel Xeon server 

10 

Shared 
L3 Cache M

em
or

y 
Co

ntr
oll

er
 

D
RA

M
 

Shared 
L3 Cache 

M
em

ory Controller 

D
RA

M
 

Bus 



Basic Configuration 
11 

Shared 
L3 Cache M

em
or

y 
Co

ntr
oll

er
 

D
RA

M
 

Shared 
L3 Cache 

M
em

ory Controller 

D
RA

M
 

Bus 

Contention domain Contention domain 

Contended resources: cache and memory controller 

 One application per core 

 NUMA-aware memory allocation 



IP MON FW RE VPN
0

5

10

15

20

25

30

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) 

5 IP competitors
5 MON competitors
5 FW competitors
5 RE competitors
5 VPN competitors

Resource Contention Effects 
12 



Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 

13 



0

5

10

15

20

25

30

35

40

Cache + Memory
Controller Contention

Cache Contention Memory Controller
Contention

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) IP
MON
FW
RE
VPN

Contention Factors 
14 

Cache is the dominant contention factor 

 5 synthetic competitors 
 



Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 

15 



Characterize Application Behavior 
16 

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) 

Competitors’ L3 refs/sec (M) 

continuous curves: 
synthetic competitors 



Characterize Application Behavior 
17 

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) 

Competitors’ L3 refs/sec (M) 

continuous curves: 
synthetic competitors 

individual points: 
realistic competitors 



Characterize Application Behavior 
18 

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) 

Competitors’ L3 refs/sec (M) 

Obs. #1: competitors’ cache refs/sec determine drop 

continuous curves: 
synthetic competitors 

individual points: 
realistic competitors 



Characterize Application Behavior 
19 

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) 

Competitors’ L3 refs/sec (M) 

IP
MON
FW
RE
VPN

Obs. #1: competitors’ cache refs/sec determine drop 

continuous curves: 
synthetic competitors 

individual points: 
realistic competitors 



Characterize Application Behavior 
20 

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) 

Competitors’ L3 refs/sec (M) 

IP
MON
FW
RE
VPN

Obs. #2: drop curve grows slowly after certain point 

continuous curves: 
synthetic competitors 

individual points: 
realistic competitors 



Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 

21 



Contention Effects Prediction  

 Step#1: performance drop curve for each app 
 Synthetic competitors – random cache reads 
 Vary competitors’ cache refs/sec 

 

 Step#2: cache refs/sec for each app running alone 
 

 Step#3: predicted drop equals the value of the drop 
curve corresponding to the competing cache refs/sec 

22 

Simple offline profiling 



0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) 

Competitors’ L3 refs/sec (M) 

Step by Step Prediction 
23 

#1 Drop Curve 
#2 Competitors’ cache refs/sec 

Simple offline profiling 



0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) 

Competitors’ L3 refs/sec (M) 

Prediction Errors 
24 

#1 Drop Curve 

Measured Drop 

#2 Competitors’ cache refs/sec 



Evaluation 
25 

Contention effects are predictable 

IP MON FW RE VPN

-10

-8

-6

-4

-2

0

2

4

6

8

10

Er
ro

r 
in

 P
re

di
ct

in
g 

Pe
rf

or
m

an
ce

 D
ro

p 

5 IP competitors
5 MON competitors
5 FW competitors
5 RE competitors
5 VPN competitors



Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 

26 



The Intuition 

 Obs. #1: competitors’ cache refs/sec determine drop 
 Aggregate data exceeds cache size  
 3MB shared cache/core  

 

27 



The Intuition 

 Obs. #1: competitors’ cache refs/sec determine drop 
 Aggregate data exceeds cache size  
 3MB shared cache/core  

 
 Obs. #2: drop curve grows slowly after certain point 

 Most damage happens early on 
 Simple probabilistic analysis 

28 



Conclusion 

 It is feasible to build a packet-processing platform 
with predictable performance using simple techniques  
 3% prediction error 

 

 Contention-aware job placement does not bring 
significant benefit to the overall performance 
 2% potential improvement 

 

29 


