
TOWARD PREDICTABLE PERFORMANCE IN

SOFTWARE PACKET-PROCESSING PLATFORMS

Mihai Dobrescu, EPFL
Katerina Argyraki, EPFL
Sylvia Ratnasamy, UC Berkeley

Programmable Networks
2

 Industry/research community efforts
 Easily deploy new services
 Test research ideas

 Software packet processing
 General purpose hardware
 Familiar programming environment

Extensible network functionality

Problem: Unpredictable Performance

 Resource contention
 Caches, memory controllers, buses
 Performance interference

 Software packet-processing systems [Dobrescu’09, Han’10]

 High performance
 Same processing for all packets

3

Goal: software packet processing with
predictable performance

System Overview
4

IP forward

IP forward

IP forward

Encryption

Statistics

input traffic packet processing output traffic

General purpose server

Filtering

Contention for
shared resources

Is This Hard?

 Yes, in general-purpose context
 Math models to predict contention
 Contention-aware job placement

 In packet-processing context?

5

Our Contribution

1. It is feasible to build a packet-processing platform
with predictable performance using simple techniques.

2. Contention-aware job placement does not bring
significant benefit to the overall performance.

6

Outline

 System overview

 Contention factors

 Observations on application behavior

 A simple prediction method

 Intuition

7

System Overview
8

IP forward

IP forward

IP forward

Encryption

Statistics

input traffic packet processing output traffic

General purpose server

Filtering

Workloads
9

Application Main functionality Characteristics

IP IP routing, 128k entries L3 cache intensive

MON Monitoring, 100k flows L3 cache intensive

FW Firewall, 1000 rules L2 cache intensive

RE Redundancy elimination Memory intensive

VPN Encryption CPU intensive

Synthetic Random cache reads Cache/memory/CPU

Representative set of realistic applications

Setup

 Linux + Click

 Commodity Intel Xeon server

10

Shared
L3 Cache M

em
or

y
Co

ntr
oll

er

D
RA

M

Shared
L3 Cache

M
em

ory Controller

D
RA

M

Bus

Basic Configuration
11

Shared
L3 Cache M

em
or

y
Co

ntr
oll

er

D
RA

M

Shared
L3 Cache

M
em

ory Controller

D
RA

M

Bus

Contention domain Contention domain

Contended resources: cache and memory controller

 One application per core

 NUMA-aware memory allocation

IP MON FW RE VPN
0

5

10

15

20

25

30

Pe
rf

or
m

an
ce

 D
ro

p
(%

)

5 IP competitors
5 MON competitors
5 FW competitors
5 RE competitors
5 VPN competitors

Resource Contention Effects
12

Outline

 System overview

 Contention factors

 Observations on application behavior

 A simple prediction method

 Intuition

13

0

5

10

15

20

25

30

35

40

Cache + Memory
Controller Contention

Cache Contention Memory Controller
Contention

Pe
rf

or
m

an
ce

 D
ro

p
(%

) IP
MON
FW
RE
VPN

Contention Factors
14

Cache is the dominant contention factor

 5 synthetic competitors

Outline

 System overview

 Contention factors

 Observations on application behavior

 A simple prediction method

 Intuition

15

Characterize Application Behavior
16

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p
(%

)

Competitors’ L3 refs/sec (M)

continuous curves:
synthetic competitors

Characterize Application Behavior
17

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p
(%

)

Competitors’ L3 refs/sec (M)

continuous curves:
synthetic competitors

individual points:
realistic competitors

Characterize Application Behavior
18

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p
(%

)

Competitors’ L3 refs/sec (M)

Obs. #1: competitors’ cache refs/sec determine drop

continuous curves:
synthetic competitors

individual points:
realistic competitors

Characterize Application Behavior
19

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p
(%

)

Competitors’ L3 refs/sec (M)

IP
MON
FW
RE
VPN

Obs. #1: competitors’ cache refs/sec determine drop

continuous curves:
synthetic competitors

individual points:
realistic competitors

Characterize Application Behavior
20

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p
(%

)

Competitors’ L3 refs/sec (M)

IP
MON
FW
RE
VPN

Obs. #2: drop curve grows slowly after certain point

continuous curves:
synthetic competitors

individual points:
realistic competitors

Outline

 System overview

 Contention factors

 Observations on application behavior

 A simple prediction method

 Intuition

21

Contention Effects Prediction

 Step#1: performance drop curve for each app
 Synthetic competitors – random cache reads
 Vary competitors’ cache refs/sec

 Step#2: cache refs/sec for each app running alone

 Step#3: predicted drop equals the value of the drop
curve corresponding to the competing cache refs/sec

22

Simple offline profiling

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p
(%

)

Competitors’ L3 refs/sec (M)

Step by Step Prediction
23

#1 Drop Curve
#2 Competitors’ cache refs/sec

Simple offline profiling

0

5

10

15

20

25

30

35

40

0 20 40 60 80 100 120 140

Pe
rf

or
m

an
ce

 D
ro

p
(%

)

Competitors’ L3 refs/sec (M)

Prediction Errors
24

#1 Drop Curve

Measured Drop

#2 Competitors’ cache refs/sec

Evaluation
25

Contention effects are predictable

IP MON FW RE VPN

-10

-8

-6

-4

-2

0

2

4

6

8

10

Er
ro

r
in

 P
re

di
ct

in
g

Pe
rf

or
m

an
ce

 D
ro

p

5 IP competitors
5 MON competitors
5 FW competitors
5 RE competitors
5 VPN competitors

Outline

 System overview

 Contention factors

 Observations on application behavior

 A simple prediction method

 Intuition

26

The Intuition

 Obs. #1: competitors’ cache refs/sec determine drop
 Aggregate data exceeds cache size
 3MB shared cache/core

27

The Intuition

 Obs. #1: competitors’ cache refs/sec determine drop
 Aggregate data exceeds cache size
 3MB shared cache/core

 Obs. #2: drop curve grows slowly after certain point

 Most damage happens early on
 Simple probabilistic analysis

28

Conclusion

 It is feasible to build a packet-processing platform
with predictable performance using simple techniques
 3% prediction error

 Contention-aware job placement does not bring
significant benefit to the overall performance
 2% potential improvement

29

