
TOWARD PREDICTABLE PERFORMANCE IN 

SOFTWARE PACKET-PROCESSING PLATFORMS 

Mihai Dobrescu, EPFL 
Katerina Argyraki, EPFL 
Sylvia Ratnasamy, UC Berkeley 



Programmable Networks 
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 Industry/research community efforts  
 Easily deploy new services 
 Test research ideas 

 

 Software packet processing  
 General purpose hardware 
 Familiar programming environment 

 

Extensible network functionality 



Problem: Unpredictable Performance 

 Resource contention 
 Caches, memory controllers, buses 
 Performance interference 

 

 Software packet-processing systems [Dobrescu’09, Han’10] 

 High performance 
 Same processing for all packets 
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Goal: software packet processing with  
predictable performance 



System Overview 
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Is This Hard? 

 Yes, in general-purpose context 
 Math models to predict contention 
 Contention-aware job placement 

 

 In packet-processing context? 
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Our Contribution 

 
1. It is feasible to build a packet-processing platform 
with predictable performance using simple techniques. 
 
2. Contention-aware job placement does not bring 
significant benefit to the overall performance. 
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Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 
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Workloads 
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Application Main functionality Characteristics 

IP IP routing, 128k entries L3 cache intensive 

MON Monitoring, 100k flows L3 cache intensive 

FW Firewall, 1000 rules L2 cache intensive 

RE Redundancy elimination Memory intensive 

VPN Encryption CPU intensive 

Synthetic Random cache reads Cache/memory/CPU 

Representative set of realistic applications 



Setup 

 Linux + Click 

 Commodity Intel Xeon server 
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Basic Configuration 
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Contention domain Contention domain 

Contended resources: cache and memory controller 

 One application per core 

 NUMA-aware memory allocation 
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Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 

13 



0

5

10

15

20

25

30

35

40

Cache + Memory
Controller Contention

Cache Contention Memory Controller
Contention

Pe
rf

or
m

an
ce

 D
ro

p 
(%

) IP
MON
FW
RE
VPN

Contention Factors 
14 

Cache is the dominant contention factor 

 5 synthetic competitors 
 



Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 
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Characterize Application Behavior 
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Characterize Application Behavior 
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Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 
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Contention Effects Prediction  

 Step#1: performance drop curve for each app 
 Synthetic competitors – random cache reads 
 Vary competitors’ cache refs/sec 

 

 Step#2: cache refs/sec for each app running alone 
 

 Step#3: predicted drop equals the value of the drop 
curve corresponding to the competing cache refs/sec 
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Simple offline profiling 
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#1 Drop Curve 
#2 Competitors’ cache refs/sec 

Simple offline profiling 
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24 

#1 Drop Curve 

Measured Drop 

#2 Competitors’ cache refs/sec 



Evaluation 
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Contention effects are predictable 
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Outline 

 System overview 
 

 Contention factors 
 

 Observations on application behavior 
 

 A simple prediction method   
 

 Intuition 
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The Intuition 

 Obs. #1: competitors’ cache refs/sec determine drop 
 Aggregate data exceeds cache size  
 3MB shared cache/core  
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The Intuition 

 Obs. #1: competitors’ cache refs/sec determine drop 
 Aggregate data exceeds cache size  
 3MB shared cache/core  

 
 Obs. #2: drop curve grows slowly after certain point 

 Most damage happens early on 
 Simple probabilistic analysis 
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Conclusion 

 It is feasible to build a packet-processing platform 
with predictable performance using simple techniques  
 3% prediction error 

 

 Contention-aware job placement does not bring 
significant benefit to the overall performance 
 2% potential improvement 
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