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Programmable Networks 
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 Industry/research community efforts  
 Easily deploy new services 
 Test research ideas 

 

 Software packet processing  
 General purpose hardware 
 Familiar programming environment 

 

Extensible network functionality 



Problem: Unpredictable Performance 

 Resource contention 
 Caches, memory controllers, buses 
 Performance interference 

 

 Software packet-processing systems [Dobrescu’09, Han’10] 

 High performance 
 Same processing for all packets 
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Goal: software packet processing with  
predictable performance 



System Overview 
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Is This Hard? 

 Yes, in general-purpose context 
 Math models to predict contention 
 Contention-aware job placement 

 

 In packet-processing context? 
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Our Contribution 

 
1. It is feasible to build a packet-processing platform 
with predictable performance using simple techniques. 
 
2. Contention-aware job placement does not bring 
significant benefit to the overall performance. 
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Workloads 
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Application Main functionality Characteristics 

IP IP routing, 128k entries L3 cache intensive 

MON Monitoring, 100k flows L3 cache intensive 

FW Firewall, 1000 rules L2 cache intensive 

RE Redundancy elimination Memory intensive 

VPN Encryption CPU intensive 

Synthetic Random cache reads Cache/memory/CPU 

Representative set of realistic applications 



Setup 

 Linux + Click 

 Commodity Intel Xeon server 
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Basic Configuration 
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Contention domain Contention domain 

Contended resources: cache and memory controller 

 One application per core 

 NUMA-aware memory allocation 
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Contention Factors 
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Cache is the dominant contention factor 

 5 synthetic competitors 
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Characterize Application Behavior 
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Contention Effects Prediction  

 Step#1: performance drop curve for each app 
 Synthetic competitors – random cache reads 
 Vary competitors’ cache refs/sec 

 

 Step#2: cache refs/sec for each app running alone 
 

 Step#3: predicted drop equals the value of the drop 
curve corresponding to the competing cache refs/sec 
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Simple offline profiling 
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Simple offline profiling 
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Evaluation 
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Contention effects are predictable 
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The Intuition 

 Obs. #1: competitors’ cache refs/sec determine drop 
 Aggregate data exceeds cache size  
 3MB shared cache/core  
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The Intuition 

 Obs. #1: competitors’ cache refs/sec determine drop 
 Aggregate data exceeds cache size  
 3MB shared cache/core  

 
 Obs. #2: drop curve grows slowly after certain point 

 Most damage happens early on 
 Simple probabilistic analysis 
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Conclusion 

 It is feasible to build a packet-processing platform 
with predictable performance using simple techniques  
 3% prediction error 

 

 Contention-aware job placement does not bring 
significant benefit to the overall performance 
 2% potential improvement 
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