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Elastic resource scaling for Infrastructure-as-a-
Service

CPU demand

= Elasticity: grow/shrink resource as required




Design goals

= Application agnostic
— Easy to deploy
— Support different applications
» Effective overload handling
— Predict overload accurately
— Minimize SLO violations
— Minimize resource cost
= Low overhead
— Light-weight
— Little interference



State of the art

» Reactive resource scaling [e.g., Amazon EC2]

— Performance degradation due to long instantiation latency
(= 2 minutes)

* Trace-driven resource scaling [e.g., Chandra et al. IWQoS
2003, Gong et al. CNSM 2007, Shen et al. SOCC 2011 ]

— Focus on short-term prediction or need to assume cyclic
workload patterns

* Model-driven resource scaling [e.g., Zhu et al. ICAC 2008,
Kalyvianaki et al. ICAC 2009, Padala et al. Eurosys 2007]

— Have parameters that need to be specified or tuned offline
for different applications/workloads



AGILE system overview
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Pre-copy live VM cloning

= Design goals
— Immediate performance scale-up
— Avoid storing and maintaining VM shapshots
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Pre-copy live VM cloning

= Design goals
— Immediate performance scale-up
— Avoid storing and maintaining VM shapshots
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Pre-copy live VM cloning

= Dynamic copy-rate configuration
— Minimum copy-rate (e.g., little interference)

— Finish cloning within the overload pending
time
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Performance scale-up comparison
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Wavelet-based medium-term prediction
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Online resource pressure modeling

= Mapping function
between: .
Observations

— Resource pressure 4 \
— SLO violation rate
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Optimizations for AGILE cloning

= Post-cloning auto-configuration
— Event driven auto-configuration
— Application VMs can subscribe to critical events

»= False alarm handling
— Continuously check predicted overload state
— Cancel cloning triggered by the false alarm
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Experimental evaluation

* Implemented on top of KVM
— Modified KVM to support pre-copy live cloning
= Test bed:

— 10 cloud nodes running CentOS 6.2 with KVM
0.12.1.2

* Benchmark systems

— RUBIS driven by four real workload traces
« WorldCup' 98, EPA, Nasa, ClarkNet (one day traces)

— Google cluster data: 100 CPU usage and 100
Memory usage traces (29 days)
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Wavelet-based prediction accuracy

= RUBIS traces

True positive rate (%)
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Wavelet-based prediction accuracy

= RUBIS traces
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Wavelet-based prediction accuracy

» Google CPU traces
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Overload handling

= Web server and database server scaling (= 2
hours, scale from 1 to 2 servers)
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Overload handling

= Web server: during scaling
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Dynamic copy-rate configuration
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Conclusion

* Prediction-driven elastic distributed resource
scaling:
— Accurate medium-term prediction based on
wavelet transforms
— Adaptive copy-rate to minimize interference
— Application-agnostic performance model

* [mmediate performance scale-up with little
overhead

Thank you!

http://dance.csc.ncsu.edu
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