

AGILE: Elastic distributed resource scaling for Infrastructure-as-a-Service

Hiep Nguyen, Zhiming Shen, Xiaohui (Helen) Gu North Carolina State University

Sethuraman SubbiahJohn WilkesNetAppGoogle

Elastic resource scaling for Infrastructure-as-a-Service

Elasticity: grow/shrink resource as required

Design goals

- Application agnostic
 - Easy to deploy
 - Support different applications
- Effective overload handling
 - Predict overload accurately
 - Minimize SLO violations
 - Minimize resource cost
- Low overhead
 - Light-weight
 - Little interference

State of the art

- Reactive resource scaling [e.g., Amazon EC2]
 - Performance degradation due to long instantiation latency (≈ 2 minutes)
- Trace-driven resource scaling [e.g., Chandra et al. IWQoS 2003, Gong et al. CNSM 2007, Shen et al. SOCC 2011]
 - Focus on short-term prediction or need to assume cyclic workload patterns
- Model-driven resource scaling [e.g., Zhu et al. ICAC 2008, Kalyvianaki et al. ICAC 2009, Padala et al. Eurosys 2007]
 - Have parameters that need to be specified or tuned offline for different applications/workloads

AGILE system overview

Pre-copy live VM cloning

- Design goals
 - Immediate performance scale-up
 - Avoid storing and maintaining VM snapshots

Pre-copy live VM cloning

- Design goals
 - Immediate performance scale-up
 - Avoid storing and maintaining VM snapshots

Pre-copy live VM cloning

- Dynamic copy-rate configuration
 - Minimum copy-rate (e.g., little interference)
 - Finish cloning within the overload pending

Performance scale-up comparison

Immediate performance scale-up

Wavelet-based medium-term prediction

Online resource pressure modeling

- Mapping function between:
 - Resource pressure
 - SLO violation rate

Optimizations for AGILE cloning

- Post-cloning auto-configuration
 - Event driven auto-configuration
 - Application VMs can subscribe to critical events
- False alarm handling
 - Continuously check predicted overload state
 - Cancel cloning triggered by the false alarm

Experimental evaluation

- Implemented on top of KVM
 - Modified KVM to support pre-copy live cloning
- Test bed:
 - 10 cloud nodes running CentOS 6.2 with KVM 0.12.1.2
- Benchmark systems
 - RUBiS driven by four real workload traces
 - WorldCup' 98, EPA, Nasa, ClarkNet (one day traces)
 - Google cluster data: 100 CPU usage and 100 Memory usage traces (29 days)

Wavelet-based prediction accuracy

RUBiS traces

Wavelet-based prediction accuracy

RUBiS traces

Wavelet-based prediction accuracy

Google CPU traces

Overload handling

Web server and database server scaling (≈ 2 hours, scale from 1 to 2 servers)

Overload handling

Web server: during scaling

Dynamic copy-rate configuration

Accurately control the cloning time under different deadlines

Conclusion

- Prediction-driven elastic distributed resource scaling:
 - Accurate medium-term prediction based on wavelet transforms
 - Adaptive copy-rate to minimize interference
 - Application-agnostic performance model
- Immediate performance scale-up with little overhead

Thank you! http://dance.csc.ncsu.edu

Acknowledgement

 This work was sponsored in part by NSF CNS0915567 grant, NSF CNS0915861 grant, U.S. Army Research Office (ARO) under grant W911NF-10-1-0273, and Google Research Awards