2%,
T :f hy
<) § i1
H 2
meeeeceeeees Z o E
&
- - Q‘;’;&t
- UCL

How Hard Can It Be?

Designing and Implementing a
Deployable Multipath TGP

Costin Raiciu

University Politehnica of Bucharest

Joint work with: Christoph Paasch, Sebastien Barre, Alan Ford,
Fabien Duchene, Michio Honda, Olivier Bonaventure, Mark Handley

. e o],
Thanks to @ﬁg‘gy CH@GE Goug[e‘ cisco

Networks are becoming multipath

Mobile devices have multiple wireless connections

Networks are becoming multipath

Datacenters have redundant topologies

Networks are becoming multipath

T
i
i

Datacenters have redundant topologies

Networks are becoming multipath

Client

Servers are multi-homed

How do we use these networks?
TCP.

Used by most applications,
offers byte-oriented reliable delivery,
adjusts load to network conditions

TCP is single path

A TCP connection

Uses a single-path in the network regardless of
network topology

Is tied to the source and destination addresses
of the endpoints

Mismatch between

network and transport
creates problems

Collisions in datacenters

[Fares et al - A Scalable, Commodity Data Center Network Architecture - Sigcomm 2008]

How hard can it be?
Designhing and
Implementing a
Deployable Multipath TCP

Deployable Multipath TCP
How hard can it be?
Designing

Implementing

Deployable Multipath TGP
How hard can it be?
Designing

Implementing

Goal: A Deployable Multipath TCP

We want to evolve TCP to be able to use
multiple paths in the network.

Multipath TCP must meet the following goals:
GOAL 1: Support unmodified applications
GOAL 2: Work over today’s networks

GOAL 3: Work whenever TCP would work

Our Linux kernel Multipath TCP implementation
supports legacy apps

and works well over:
deployed 3G and Wifi networks,
existing datacenters and
the Internet at large.

How hard can it be?
Designing

Implementing

It can be pretty hard.

It can be pretty hard.

Mark Handley suggested we start working on
designing MPTCP in spring 2007

It can be pretty hard.

Mark Handley suggested we start working on
designing MPTCP in spring 2007

Five years later, here we are —
we finally nailed this!

It can be pretty hard.

Mark Handley suggested we start working on
designing MPTCP in spring 2007

Five years later, here we are —
we finally nailed this!

Why was it this difficult?
Internet Architecture is a living thing.

Protocol Layering

Link layers (eg Ethernet) are local to a particular link
Routers look at IP headers to decide how to route a packet.
TCP provides reliability via retransmission, flow contrgg
Application using OS’s TCP APRI to do its job.

Middleboxes

Bit 0 Bit 15 Bit 16 Bit 31

Version | [HL TOS | ECN Total Length
|dentification Flags Fragment Offset
TTL Protocol Header Checksum
Source IP

Destination IP

Source Port Destination Port

Sequence Number

Acknowledgment Number 20
Bytes
aicElels Reserved | Code bits Receive Window
Lenath
Checksum Urgent Pointer
. 0-40
Options Bytes

Data

Bit 0 Bit 15 Bit 16 Bit 31

Version | [HL TOS | ECN Total Length
|dentification Flags Fragment Offset
TTL Protocol Header Checksum
Source IP

Destination IP

Source Port Destination Port

Sequence Number

Acknowledgment Number 20
Bytes
aicElels Reserved | Code bits Receive Window
Lenath
Checksum Urgent Pointer
. 0-40
Options Bytes

Data

Bit 0 Bit 15 Bit 16 Bit 31
Version | [HL TOS | ECN Total Length
|dentification Flags Fragment Offset
TTL Protocol Header Checksum
Source |IP
Destination |P
Source Port \\j@g Destination Port
Sequence Number
Acknowledgment Number 20
Bytes
aicElels Reserved | Code bits Receive Window
Lenath
Checksum Urgent Pointer
. 0-40
Options Bytes

Data

Bit 0 Bit 15 Bit 16 Bit 31
Version | [HL TOS | ECN Total Length
|dentification Flags Fragment Offset
TTL Protocol Header Checksum
Source |IP
Destination |P
Source Port \\@Z Destination Port
Sequence Number
Acknowledgment Number 20
Bytes
aicElels Reserved | Code bits Receive Window
Lenath
Checksum Urgent Pointer
. 0-40
Options Bytes

Data

Bit 0 Bit 15 Bit 16 Bit 31

\\@% I \\:@% I% \\j@% I \\j@% Total Length
\\j@% I\\j@% tification \\:@% I \\:@Z agment Offset

TTL \\j@% otocol Header Checksum
(os]
g{ Source IP

o) .
&{ Destination |P

\\j@% Source Port \\j@% Destination Port
\\j@% Sequence Number

\@/ Acknowledgment Number 20
“m Bytes

Receive Window

Nl
\\j@j r Reserved | Code bits

an

Urgent Pointer

(os]
&4 Checksum L
\\j@% Options Bytes

\\@% Data

Designing

Implementing

MPTCP Connection Management

MPTCP Connection Management

MPTCP Connection Management

Enable MPTCP if
SYN has MP_CAPABLE

MPTCP Connection Management

Enable MPTCP if
SYN has MP_CAPABLE

ENABLED

MPTCP Connection Management

Enable MPTCP if Enable MPTCP if
SYN/ACK has MP_CAPABLE SYN has MP_CAPABLE

ENABLED

MPTCP Connection Management

Enable MPTCP if Enable MPTCP if
SYN/ACK has MP_CAPABLE SYN has MP_CAPABLE

ENABLED ENABLED

MPTCP Connection Management

Subflow 1 Subflow 1

-~ P
m \\ / m
— ~ 2 —
~ ~ - _ - -

MPTCP Connection Management

MPTCP Connection Management

MPTCP Connection Management

MPTCP Connection Management

Subflow 1 Subflow 1

— —

Subflow 2 Subflow 2

That was easy!

Almost too easy...

MPTCP Connection Management

Enable MPTCP if Enable MPTCP if
SYN/ACK has MP_CAPABLE SYN has MP_CAPABLE

ENABLED

MPTCP Connection Management

Enable
SYN/A|

6% of access networks remove unknown options
(14% on port 80)

P if
BLE
ED

MPTCP Connection Management

s e-\:’ .{"-’ \\
’/ ~
@ ~ - =
N I/
== \ B
— N 7/ —
\5-_ __’/

Enable MPTCP if Enable MPTCP if
SYN/ACK has MP_CAPABLE SYN has MP_CAPABLE

DISABLED ENABLED

MPTCP Connection Management

s e-\:’ .{"-’ \

’/ ~

@ ~ - -

A S 7

, — \ f

— - P —
\5-_ __’/

Enable MPTCP if Enable MPTCP if

SYN/ACK has MP_CAPABLE SYN has MP_CAPABLE
DISABLED and ACK has DATA_ACK

MPTCP Connection Management

/, e-\:’ .{"-’ \\
- ~
@ ~ - -
A S 7
, — \ f
— - P —
\5-_ __’/

Enable MPTCP if Enable MPTCP if

SYN/ACK has MP_CAPABLE SYN has MP_CAPABLE
DISABLED and ACK has DATA_ACK

MPTCP Connection Management

. NS = \\
’/ ~
~ -
N I/
\ =
— - P —
\~~— _—’/

Enable MPTCP if Enable MPTCP if
SYN/ACK has MP_CAPABLE SYN has MP_CAPABLE
DISABLED and ACK has DATA_ACK
DISABLED
To achieve GOAL 3:

When MPTCP operation is not possible, fallback to TCP.

Lesson

Negotiation used to be between two endpoints

In today’s Internet, negotiation is:
between two endpoints
and an unknown number of intermediaries

New protocol negotiation has to take this into
account or it will fail

Sending Data

TCP Operation

TCP Operation

TCP Operation

TCP Operation

TCP Operation

TCP Operation

TCP Operation

TCP Operation

Strawman Design

Strawman Design

Strawman Design

Strawman Design

Strawman Design

Strawman Design

Strawman Design

ACK 3

ACK 2

A third of access networks will
“correct” or drop ACKs of unseen data

Strawman Design

Strawman Design

—

Ok, so what does work?

 We need a sequence space for each subflow
— This will drive loss detection and retransmissions

 We need a data sequence number
— This will put segments in order at the receiver

e We need a data ACK for flow control
— Receive window is relative to Data ACK

MPTCP Data Transmission

SUBFLOW: 100
DATA:1

MPTCP Data Transmission

SUBFLOW: 100
DATA:1

E-.E

SUBFLOW: 200
DATA:2

MPTCP Data Transmission

SUBFLOW: 101 SUBFLOW: 100
DATA:3 DATA:1

E-.E

SUBFLOW: 200
DATA:2

MPTCP Data Transmission

SUBFLOW: 101 SUBFLOW: 100
DATA:3 DATA:1

MPTCP Data Transmission

SUBFLOW: 101
SUBFLOW: 102 DATA:3 SUBFLOW: 100

TCP Packet Header

Bit 0 Bit 15 Bit 16 Bit 31

Source Port Destination Port

Sequence Number

Acknowledgment Number 20
Bytes
ey Reserved | Code bits Receive Window
Lenath
Checksum Urgent Pointer
. 0-40
Options Bytes

Data

MPTCP Packet Header

Bit 0 Bit 15 Bit 16 Bit 31

Subflow Source Port SubflowDestination Port

Subflow Sequence Number

Subflow Acknowledgment Number Bitoes
ey Reserved | Code bits Receive Window
Lenath
Checksum Urgent Pointer
: -4
Options (E)syteg

Data

MPTCP Packet Header

Bit 0 Bit 15 Bit 16 Bit 31

Subflow Source Port SubflowDestination Port

Subflow Sequence Number

Subflow Acknowledgment Number Bitoes
Egsgﬁ: Reserved | Code bitﬂo%lneciion Receive Windovx relative o
Checksum Urgent Pointerv |
Options (E)By;tig

Data

MPTCP Packet Header

Bit 0 Bit 15 Bit 16 Bit 31

Subflow Source Port SubflowDestination Port

Subflow Sequence Number

20
Bytes

Reserved | Code bitﬂo%lneciion Receive Window relative o

Subflow Acknowledgment Number

Header
Lenath

Checksum Urgent Pointer

0-40

Data sequence number ? Options Data ACK ? Bytes

Data sequence number ? Data Data ACK?

Sending Data ACKs in the payload
sucks

Sending Data ACKs in the payload
sucks leads to deadlocks

Client Server

Read Request 1,
Sends Response 1

Read Request 2,
Sends Response 2

Read Request 2,
Sends Response 2

Client Server

Client blocked
by server

receive window Read Request 1,

sponse 1

Data waiting in _
est 2 till

receive buffer

lllllJlI\.-U’

Even though the
client app has
read the data,
Data Ack still
cannot be sent

Server blocked on client
receive window
(receive window will only

open when Data Ack
received)

Design space for feasible solutions is quite narrow

There are not too many things that could have

been done differently

Read paper for:

* Flow control * Fast receive code
* Dealing with content- * Middlebox tests
changing middleboxes * Evaluation

* Dealing with TSO/LRO
e Connection teardown

Implementing

MPTCP over WiFi/3G

8Mbps, 20ms

@
—

2Mbps, 150ms

—
-

Average Goodput in Mbps

TCP over WiFi/3G

o

D

TCP over WiFi |
TCP over 3G

ll

IIIIIIIIIIIIIIIIIIIIIIIIIIII

;JD

0.5 1.0

1.5

Rcv/Snd-Buffer size in MB

—
-

Average Goodput in Mbps

SD

MPTCP over WiFi/3G

o

D

TCP over WiFi
TCP over 3G
regular MPTCP |-

lll

lllllllllllllllllllllllllllll

0 0.5 1.0

1.5

Rcv/Snd-Buffer size in MB

Average Goodput in Mbps

MPTCP over WiFi/3G

10
!
61
increases
IIIIIIIII TCP ov throughput

4t regular MP :

A" e g

0.0 05 7.0 5 2.0

Rcv/Snd-Buffer size in MB

MPTCP over WiFi/3G

—
-

o

7p)
Q.
o)
=
=
‘g 6t ¥ | aeaan. TCP over WiFi
8 ST TCP over 3G
8 < ha‘;\’p';a:ed regular MPTCP |-
D here?
©)
© b
>
<
0.0 05 .0 I5 2.0

Rcv/Snd-Buffer size in MB

MPTCP over WiFi/3G

@
—

Receive Window

MPTCP over WiFi/3G

Receive Window

MPTCP over WiFi/3G

@
—

Receive Window
1 =

4 3 2 ‘

MPTCP over WiFi/3G
& o |

Receive Window
1 =

4 3 2 ‘

MPTCP over WiFi/3G

Wifi path blocked by
the Receive Window

Receive Window
1 =

4 3 2 ‘

MPTCP over WiFi/3G

REINJECT SEGMENT

ON WIFI

—

Receive Window
1 B

4 3 2 ‘

MPTCP over WiFi/3G

REINJECT SEGMENT :

ON WIFI
HALVE CONGESTION ‘ Receive Window
WINDOW ’

OF 3G SUBFLOW 4 | 3 2 ‘

MPTCP over WiFi/3G

Receive Window
1 B8

4 3 2‘1

MPTCP over WiFi/3G

E-@E

Recelve Window

—
-

Average Goodput in Mbps

SD

MPTCP over WiFi/3G

o

D

------ TCP over WiFi
IOy TCP over 3G
regular MPTCP
= MPTCP optimized |
0 0.5 1.0 1.5 2.0

Rcv/Snd-Buffer size in MB

Demo

Conclusions

* Designing a Multipath TCP isn’t difficult.
* Designing a deployable Multipath TCP is much

narder.

— Need to understand the evolving and
undocumented Internet architecture.

— Need defensive mechanisms to fall back to TCP
behaviour when all else fails.

e Most extensions to TCP now face the same
hurdles.

Conclusions (2)

* Designing a performant MPTCP needs care.

— Especially need careful management of buffering
to avoid unwanted interactions between subflows.

MPTCP allows standard applications to reap
the benefits of multipath networks
* |tis deployable today

* Try out the code — http://mptcp.info.ucl.ac.be/

