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Networks are becoming multipath

Mobile devices have multiple wireless connections
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Networks are becoming multipath

Client

Servers are multi-homed



How do we use these networks?
TCP.

Used by most applications,
offers byte-oriented reliable delivery,
adjusts load to network conditions



TCP is single path

A TCP connection

Uses a single-path in the network regardless of
network topology

Is tied to the source and destination addresses
of the endpoints



Mismatch between

network and transport
creates problems




Collisions in datacenters

[Fares et al - A Scalable, Commodity Data Center Network Architecture - Sigcomm 2008]
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Goal: A Deployable Multipath TCP

We want to evolve TCP to be able to use
multiple paths in the network.

Multipath TCP must meet the following goals:
GOAL 1: Support unmodified applications
GOAL 2: Work over today’s networks

GOAL 3: Work whenever TCP would work



Our Linux kernel Multipath TCP implementation
supports legacy apps

and works well over:
deployed 3G and Wifi networks,
existing datacenters and
the Internet at large.



How hard can it be?
Designing

Implementing
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It can be pretty hard.

Mark Handley suggested we start working on
designing MPTCP in spring 2007

Five years later, here we are —
we finally nailed this!

Why was it this difficult?
Internet Architecture is a living thing.



Protocol Layering

Link layers (eg Ethernet) are local to a particular link
Routers look at IP headers to decide how to route a packet.
TCP provides reliability via retransmission, flow contrgg
Application using OS’s TCP APRI to do its job.




Middleboxes
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That was easy!



Almost too easy...



MPTCP Connection Management
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MPTCP Connection Management

Enable
SYN/A|

6% of access networks remove unknown options
(14% on port 80)
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MPTCP Connection Management
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Enable MPTCP if Enable MPTCP if
SYN/ACK has MP_CAPABLE SYN has MP_CAPABLE
DISABLED and ACK has DATA_ACK
DISABLED
To achieve GOAL 3:

When MPTCP operation is not possible, fallback to TCP.




Lesson

Negotiation used to be between two endpoints

In today’s Internet, negotiation is:
between two endpoints
and an unknown number of intermediaries

New protocol negotiation has to take this into
account or it will fail



Sending Data



TCP Operation
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Strawman Design
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Strawman Design

ACK 3

ACK 2

A third of access networks will
“correct” or drop ACKs of unseen data
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Ok, so what does work?

 We need a sequence space for each subflow
— This will drive loss detection and retransmissions

 We need a data sequence number
— This will put segments in order at the receiver

e We need a data ACK for flow control
— Receive window is relative to Data ACK



MPTCP Data Transmission

SUBFLOW: 100
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MPTCP Packet Header
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Sending Data ACKs in the payload
sucks



Sending Data ACKs in the payload
sucks leads to deadlocks



Client Server

Read Request 1,
Sends Response 1

Read Request 2,
Sends Response 2

Read Request 2,
Sends Response 2




Client Server

Client blocked
by server

receive window Read Request 1,

sponse 1

Data waiting in _
est 2 till

receive buffer

lllllJlI\.-U’

Even though the
client app has
read the data,
Data Ack still
cannot be sent

Server blocked on client
receive window
(receive window will only

open when Data Ack
received)




Design space for feasible solutions is quite narrow

There are not too many things that could have

been done differently

Read paper for:

* Flow control * Fast receive code
* Dealing with content- * Middlebox tests
changing middleboxes * Evaluation

* Dealing with TSO/LRO
e Connection teardown



Implementing



MPTCP over WiFi/3G
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MPTCP over WiFi/3G
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MPTCP over WiFi/3G
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Conclusions

* Designing a Multipath TCP isn’t difficult.
* Designing a deployable Multipath TCP is much

narder.

— Need to understand the evolving and
undocumented Internet architecture.

— Need defensive mechanisms to fall back to TCP
behaviour when all else fails.

e Most extensions to TCP now face the same
hurdles.



Conclusions (2)

* Designing a performant MPTCP needs care.

— Especially need careful management of buffering
to avoid unwanted interactions between subflows.



MPTCP allows standard applications to reap
the benefits of multipath networks
* |tis deployable today

* Try out the code — http://mptcp.info.ucl.ac.be/



