challenges In




Google-wide Profiling
(top for Google)

from a random selection of machines and
services, continuously collect:

® hardware counters
o cycles, ins, br mispred, cache misses

® software profiles
o heap, growth, lock contention, fragmentation

aggregate results, present top
® applications, libraries, functions

11 httn://recearch aooadle com/piithe/niitbREE75 himl



what works?

continuous testing

® tight integration with code, build system,
compiler

® thread, memory checkers
loadtests (sometimes)
tracing

® kernel
® application



what doesn't work?

scale is a problem

® one in a million is commonplace

o race conditions, memory leaks, overruns, hardware
failures

® real applications are orders of magnitude
larger than SPEC et. al.

® complexity of production behavior is hard to
model

® contention is difficult to predict and plan for

[2]

® i(actinad matrix iec combinatoric exvnlocinn



hard problems cross boundaries

datacenter applications employ many types of
parallelism and they are distributed

® client, balancer, frontend, backend, storage

® at each hop

o queues in kernel and userspace

o contention with other jobs on machine

a single query may touch hundreds of machines
= long tail latency, RPC fanout [1]



what would help?

really low-overhead tools, sub 3%
® especially for error detection, like [1]
® hardware support welcome



