
D-PROV: Extending the PROV Provenance Model
to express Workflow Structure

Paolo Missier(1), Saumen Dey(2), Khalid Belhajjame(3),
Vıctor Cuevas-Vicentt́ın(2), Bertram Ludaescher(2)

(1) Newcastle University, UK
(2) UC Davis, CA, USA

(3) University of Manchester, UK

TAPP’13
Lombard, IL.
April, 2013

Queries that require provenance

2

Q1: “track the lineage of the final outputs of the workflow”

Q2: “list the parameter values that were used for a specific task t in the workflow”

Q3: “check that the provenance traces conform to the structure of the workflow”

Prospective Provenance (p-prov):
- representation of the workflow itself;

Retrospective Provenance (r-prov):
- provenance of the data produced by one workflow run

Provenance of the Process:
- account of the evolution of the workflow across versions

FREIRE, J., KOOP, D., SANTOS, E., AND SILVA, C. T. Provenance for Computational Tasks: A Survey. Computing
in Science and Engineering 10, 3 (2008), 11–21.

PROV @W3C: scope and structure

3 source: http://www.w3.org/TR/prov-overview/

Recommendation
track

http://www.w3.org/TR/prov-overview/
http://www.w3.org/TR/prov-overview/

r-prov and p-prov in plain PROV

4

d T2Inv
usedT1Inv

wasGeneratedBy

p-prov

wasAssociatedWith

T1

wasAssociatedWith

T2prov:type= "prov:plan"

r-prov

// p-prov: tasks, but no data or activities
entity(T1, [prov:type = 'prov:plan'])
entity(T2, [prov:type = 'prov:plan'])
// r-prov - task invocation and data
activity(T1inv)
activity(T2inv)
entity(d) // data flowing between two task instances
wasGeneratedBy(d, T1inv)
used(T2inv, d)
// connecting r-prov and p-prov
wasAssociatedWith(T1inv, _, T1) // T1 is the plan for T1inv
wasAssociatedWith(T2inv, _, T2) // T1 is the plan for T2inv

Reference dataflow models

5

wf

T1
op1

op2
T2

ip1

ip2

Processors, ports, data links

wf

T1 ch1 T2

ch2

Processors, channels

Kepler
Taverna
VisTrails
e-Science Central
...

Dataflow process networks (*)
(e.g. a specific Kepler semantics)

(*) LEE, E. A., AND PARKS, T. M. Dataflow process networks. Proceedings of the IEEE 83, 5 (1995), 773–801.

Extensions I / p-prov / ports model

6

wf

T1
op1

op2
T2

ip1

ip2

T1

T2

prov:type= "prov:plan"
prov:type= "D1:task"

op1

ip1

prov:type= "D1:port"

prov:type= "prov:plan"
prov:type= "D1:task"

wfprov:type=
 "D1:workflow"

isTaskOf

isTaskOf

hasOutputPort

dataLink

hasInputPort

hasOutPort(T1, op1)
hasInPort(T2, ip1)
dataLink(op1, ip1)
isTaskOf(wf, T1)
isTaskOf(wf, T2)

Extensions II / p-prov / channel model

7

wf

T1 ch1 T2

ch2

ch1

T1

T2
isSinkOf

isSourceOf

wf
prov:type= "D1:workflow",

prov:type= "prov:plan"

isTaskOf

isTaskOf

prov:type= "prov:plan"
prov:type= "D1:task"

prov:type= "prov:plan"
prov:type= "D1:task"

ch2
isSourceOf

prov:type= "D1:channel"

isSourceOf(T1,ch2)
isSourceOf(T1,ch1)
isSinkOf(T2,ch1)
isTaskOf(T1, wf)
isTaskOf(T2, wf)

p-prov/r-prov pattern for port-oriented workflows

8

onOutPort

T1Inv

d

onInPort

T2Inv

wasAssociatedWith

T1

wasAssociatedWith

T2

op1

ip1

wf

isTaskOf

isTaskOf

hasInputPort

hasOutputPort

wfInv
wasAssociatedWith

wasStartedBy

wasStartedBy

dataLink

hasOutPort(t1, op1)
hasInPort(t2, ip1)
dataLink(op1, ip1)
isTaskOf(wf, t1)
isTaskOf(wf, t2)

activity (wfRun)
activity (t1inv)
activity (t2inv)
entity (d)
onOutPort(d, op1, t1Inv)
onInPort(d, ip1, t2Inv)

p-prov/r-prov pattern for port-oriented workflows

8

onOutPort

T1Inv

d

onInPort

T2Inv

wasAssociatedWith

T1

wasAssociatedWith

T2

op1

ip1

wf

isTaskOf

isTaskOf

hasInputPort

hasOutputPort

wfInv
wasAssociatedWith

wasStartedBy

wasStartedBy

dataLink

hasOutPort(t1, op1)
hasInPort(t2, ip1)
dataLink(op1, ip1)
isTaskOf(wf, t1)
isTaskOf(wf, t2)

activity (wfRun)
activity (t1inv)
activity (t2inv)
entity (d)
onOutPort(d, op1, t1Inv)
onInPort(d, ip1, t2Inv)

wasGeneratedBy(D, tInv) :− onOutPort(D, _, tInv).
used(tInv, D) :− onInPort(D, _, tInv)

Lossy mapping to plain PROV: Port removal

p-prov/r-prov pattern for channel-oriented workflows

9

wasWrittenTo

wasReadFrom

ch1

T1

T2

isSinkOf

isSourceOf

wf

isTaskOf

isTaskOf

d

T1Inv

wasAssociatedWith

T2Inv

wasAssociatedWith

wfInv

wasStartedBy

wasStartedBy

wasAssociatedWith

sourceOf(t1,ch)
sinkOf(t2,ch)
isTaskOf(t1, wf)
isTaskOf(t2, wf)
activity (wfRun)
activity (t1inv)
activity (t2inv)
entity (d)
wasWrittenTo(d,ch, t1Inv)
wasReadFrom(d,ch, t2Inv)

p-prov/r-prov pattern for channel-oriented workflows

9

wasWrittenTo

wasReadFrom

ch1

T1

T2

isSinkOf

isSourceOf

wf

isTaskOf

isTaskOf

d

T1Inv

wasAssociatedWith

T2Inv

wasAssociatedWith

wfInv

wasStartedBy

wasStartedBy

wasAssociatedWith

sourceOf(t1,ch)
sinkOf(t2,ch)
isTaskOf(t1, wf)
isTaskOf(t2, wf)
activity (wfRun)
activity (t1inv)
activity (t2inv)
entity (d)
wasWrittenTo(d,ch, t1Inv)
wasReadFrom(d,ch, t2Inv)

wasGeneratedBy(d, tInv) :− wasWrittenTo(d,ch, t1Inv)
used(tInv, D):−wasReadFrom(d,ch,t2Inv)

Lossy mapping to plain PROV: Channel removal:

Bundles, provenance of provenance

10

A bundle is a named set of provenance descriptions, and is itself an entity,
so allowing provenance of provenance to be expressed.

bundle pm:bundle1

entity(ex:draftComments)
entity(ex:draftV1)

activity(ex:commenting)
wasGeneratedBy(ex:draftComments, ex:commenting,-)
used(ex:commenting, ex:draftV1, -)
endBundle
...
entity(pm:bundle1, [prov:type='prov:Bundle'])
wasGeneratedBy(pm:bundle1, -, 2013-03-20T10:30:00)
wasAttributedTo(pm:bundle1, ex:Bob)

pm:bundle1

commentingdraft
v1

used draft
comments

wasGeneratedBy

Structural workflow nesting using bundles

11

entity (wfRunTrace, [prov:type=’prov:Bundle’])
wasGeneratedBy(wfRunTrace,wfInv,-)

Repurposing: use bundles to associate a workflow execution with the
provenance it generates

This makes it possible to write hierarchical provenance of nested workflows,
recursively:

entity (T, [prov:type="D1:task", prov:type="D1:workflow"])

bundle wfRunTrace
 activity(wfRun) // run of top level wf
 activity(Tinv) // run of T, a sub-workflow

 wasAssociatedWith(Tinv, _, T)
 entity(TinvTrace, [prov:type='prov:Bundle'])
 wasGeneratedBy(TinvTrace, Tinv, _)
 ...
endbundle

Answering the sample queries

12

onOutPort

D

onInPort

OP

IP

dataLink

dataLink (OP, IP) :− onOutPort(D,OP,_),
 onInPort(D,IP,_).

Two steps:
- define rules that entail p-prov relations from r-prov relations, and
- check that those new p-prov relations are consistent with any constraints

defined on the workflow structure / infer new p-prov statements

Q3: “match the provenance trace to the workflow structure”

T1
op1

op2
T2

ip1

ip2

wf

constraint violation?

Structure inferences

13

hasOutPort(T, OP) :−
 onOutPort(D,OP,I1),
 wasAssociatedWith(I1,_,T1).onOutPort

I1

D

onInPort

I2

wasAssociatedWith

T1

wasAssociatedWith

T2

OP

IP

hasInPort(T, IP) :−
 onInPort(D,IP,I1),
 wasAssociatedWith(I1,_,T1).

Structure inferences

14

isTaskOf(T2, Wf) :− onOutPort(D,OP,I1),
 hasOutPort(T1, OP),
 onInPort(D,IP,I2),
 hasInPort(T2, IP),
 wasAssociatedWith(I1,_,T1),
 wasAssociatedWith(I2,_,T2),
 isTaskOf(T1, Wf).

onOutPort

I1

D

onInPort

I2

wasAssociatedWith

T1

wasAssociatedWith

T2

OP

IP

wf

isTaskOf

isTaskOf

Other PROV extensions into “workflow-land”

15

virtual clusters based on these virtual machines following
restrictions defined by scientists.

3. PROVENANCE MODELING
Our model is designed to import provenance data from different
SWfMS into a single model to be used for querying during
workflow runtime execution. Our provenance data model, named
PROV-Wf (Figure 1) is based on PROV recommendation [11].
PROV allows for representing entities, people and processes
involved in the generation of a piece of data so that further
extensions can be defined, which is the case of PROV-Wf. This
section is divided in Sub-section 3.1 that presents PROV-Wf
model and sub-section 3.2 that describes the implementation of
components to capture provenance data from different SWfMS.

3.1 Provenance Data Modeling in PROV-Wf
PROV-Wf is used to represent retrospective provenance of
scientific workflows that can be provided at runtime. The main
components of PROV-Wf are identified and stereotyped with the
types of the PROV data model to define an entity or a plan.
Accordingly to PROV, an entity is something digital, physical or
conceptual defined in the provenance data model and a plan is a
subclass of entity that represents a set of actions intended by one
or more agents to achieve some goals. The PROV-Wf model is
composed by three main parts: the structure of the experiment
(white classes in the UML class diagram), execution of the
experiment (dark gray classes) and environment configuration
(light gray classes). Furthermore, the stereotypes in UML class
diagram are used to represent PROV components.

The agent Scientist represents a person to use computational
resources to execute the experiment (composed as a workflow).
Also, the agent Scientist is associated to a machine (i.e. agent
Machine). The agent Machine establishes an association with a
workflow (plan Workflow), which is composed by a set of
activities (i.e. plan WActivity). Each activity is responsible for
executing a program in a machine with a specific configuration.
The invocation of a program within a workflow (i.e. execution
instance) uses a set of parameters that can be seen as a set of

values to be consumed. To express all data that is consumed and
produced by execution instances, the entity RelationSchema is
associated with a schema and can be defined with multiple fields.
Each field (i.e. entity Field) describes the meaning of each
parameter associated to a program that is associated to a
WActivity. The entity Value expresses the set of values of a field,
each set associated to an execution instance. Furthermore, the
entity File represents all files consumed and produced by a
workflow execution and entity FileType represents the expected
type of file to workflow. The entities with associations with
consumption and production of files and value present two
directional PROV associations expressed, respectively, by Used
(consumption) and WasGeneratedBy (production).

According to PROV data model, an agent is described as
something that assumes some sort of responsibility. Additionally,
PROV defines software agent as an entity that is capable of
running software. Thus, Machine and Program are considered,
respectively, an agent and a software agent. Furthermore, the
activities in PROV data model are mapped to describe an action
that happens in a period of time (during workflow execution).
Also, some entities and plan (subclass of entity) can be used by a
PROV activity. So, respecting these properties, two PROV-Wf
activities were defined and tagged with prov:Activity. The first
represents the execution of some activity instance (activity
Execute activity), while the second defines the execution
properties of one SWfMS (activity Execute workflow). Also, the
execution of an activity instance determines which parameters are
consumed by each instance of the activity.

By using PROV-Wf we are able to represent provenance data to
be distributed and queried at runtime. In the next sub-section we
present how this provenance model is coupled to a set of
components developed for capturing and querying runtime
provenance data.

3.2 Components for Capturing Provenance
We have developed a series of components to import provenance
data from different SWfMS to PROV-Wf model. Our components

Figure 1 PROV-Wf data model

Flavio Costa, Vítor Silva, Daniel de Oliveira, Kary Ocaña, Eduardo Ogasawara, Jonas Dias, and Marta Mattoso,
Capturing and Querying Workflow Runtime Provenance with PROV: a Practical Approach, Procs. BigProv’13,
Genova, Italy, March 2013

WfProv from the Wf4Ever project

www.wf4ever-project.org

Prov-Wf:

Workflow

Process

DataLink

Input

Output

Plan

Parameter

hasInput

hasOutput

hasSubProcess

hasDataLink

hasSource

hasSink
cc

wasGeneratedBy

WorkflowEngine

ProcessRun Artifact

describedByProcess
cc

Entity

usedInput

wasOutputFrom

used

Activity

describedByParameter
cc

wasEnactedBy

SoftwareAgent

Summary and extensions

• Simple extensions to PROV
– designed to model p-prov
– complementary to r-prov

• They enable queries that cut across r-prov and p-prov

• Bundle mechanism used for provenance of nested workflow components

• Next step: harmonize similar extensions proposed by other groups
– overall goal is to achieve interoperability 16

