Fault Isolation and Quick Recovery
in Isolation File Systems

Lanyue Lu
Andrea C.Arpaci-Dusseau
Remzi H.Arpaci-Dusseau

University of Wisconsin - Madison

File-System Availability Is Critical

File-System Availability Is Critical

Main data access interface
- desktop, laptop, mobile devices, file servers

File-System Availability Is Critical

Main data access interface
- desktop, laptop, mobile devices, file servers

A wide range of failures

= resource allocation, metadata corruption
- failed 1/O operations, incorrect system states

File-System Availability Is Critical

Main data access interface
- desktop, laptop, mobile devices, file servers

A wide range of failures

= resource allocation, metadata corruption
- failed 1/O operations, incorrect system states

A small fault can cause global failures
- e.g., a single bit can impact the whole file system

File-System Availability Is Critical

Main data access interface
- desktop, laptop, mobile devices, file servers

A wide range of failures

= resource allocation, metadata corruption
- failed 1/O operations, incorrect system states

A small fault can cause global failures
- e.g., a single bit can impact the whole file system

Global failures considered harmful
= read-only, crash

Server Virtualization

VMI VM2 VM3 Guest virtual
— _— _ machines

_

VMDKI| VMDK2 VMDK3

Hypervisor

Shared file system

ey
-

B i (oo

x e.g., metadata corruption

x e.g., metadata corruption

N/

2% AllVMs

. ’ vv3 are affected

/‘_‘

ReadOnIy
Crash

boltef RS
25 %% AllVMs

VM2 vm3 are affected

ReadOnly
VMDK2 [} VMDK3 or
Crash

e.g., metadata corruption

Our Solution

Our Solution

A new abstraction for fault isolation

= support multiple independent fault domains
= protect a group of files for a domain

Our Solution

A new abstraction for fault isolation

= support multiple independent fault domains
= protect a group of files for a domain

Isolation file systems

- fine-grained fault isolation
= quick recovery

Study of Failure Policies
Isolation File Systems

Challenges

Questions to Answer

Questions to Answer

What global failure policies are used ?

= failure types
= number of each type

Questions to Answer

What global failure policies are used ?

= failure types
= number of each type

What are the root causes of global failures ?

- related data structures
- number of each cause

Methodology

Methodology

Three major file systems

- Ext3 (Linux 2.6.32), Ext4 (Linux 2.6.32)
= Btrfs (Linux 3.8)

Methodology

Three major file systems

- Ext3 (Linux 2.6.32), Ext4 (Linux 2.6.32)
= Btrfs (Linux 3.8)

Analyze source code

- identify types of global failures
= count related error handling functions
- correlate global failures to data structures

Ql:

what global failure policies

are used !

Global Failure Policies

Global Failure Policies

Definition

= a failure which impacts all users of the file system or
even the operating system

Global Failure Policies

Definition

= a failure which impacts all users of the file system or
even the operating system

Read-Only

- e.g.,ext3_error():
= mark file system as read-only
= abort the journal

Read-Only Example

read block bitmap(...){

bitmap blk = desc->bg block bitmap;
bh = sb getblk(sb, bitmap blk);
1f (!bh){
ext3 error(sb, “Cannot read block
bitmap”);

= W N K

return NULL;

13

Read-Only Example

read block bitmap(...){

bitmap blk = desc->bg block bitmap;
bh = sb getblk(sb, bitmap blk);
1f (!bh){
ext3 error(sb, “Cannot read block
bitmap”);

= WIN -

return NULL;

13

Read-Only Example

read block bitmap(...){

bitmap blk = desc->bg block bitmap;
bh = sb getblk(sb, bitmap blk);
1f (!bh){
ext3 error(sb, “Cannot read block
bitmap”);

= WIN -

return NULL;

13

Read-Only Example

read block bitmap(...){

bitmap blk = desc->bg block bitmap;
bh = sb getblk(sb, bitmap blk);
1f (!bh){
ext3 error(sb, “Cannot read block
bitmap”);

=W N -

return NULL;

13

Read-Only Example

read block bitmap(...){

bitmap blk = desc->bg block bitmap;
bh = sb getblk(sb, bitmap blk);
1f (!bh){
ext3 error(sb, “Cannot read block
bitmap”);

= W N K

return NULL;

13

Global Failure Policies

Definition

= a failure which impacts users of the file system or
even the operating system

Read-Only

- e.g.,ext3_error():
= mark file system as read-only
= abort the journal

Crash
- e.g., BUG(), ASSERT (), panic()
= crash the file system or operating system

Crash Example

, A
: 0
! O
; —
, b_
, Q
' Q
" rol
I P —
, | ©
_ 9%
v %R 0 ¢
1) r_/
v I
TR B
.O o

1 . ° Ol.
< 83
"»cnu % | O
e
' O i 0 O
I 3 0O D
"S _ g9 M
1 U a

Loy Q

"ﬁ w._ —
L

15

Crash Example

, A
: 0
! O
; —
, b_
, Q
' Q
" rol
I P~
, D
_ e
v %R 0|
1) r_/
v |
)
.O o

1 . ° Ol.
< R
"»cnu % | |O
e VN N
' O i 010
I 3 o D
"S _ 9 MM
1 U a

Loy Q

"ﬁ w._ — N
L

15

Crash Example

, A
: 0
! O
; —
, b_
, Q
' Q
" rol
I P~
, | ©
_ e
v %R 0
1) r_/
v I
s B8
.O o

1 . ° Ol.
< Rl
"»cnu % 1 O
g 2
' O i 00
I 3 0D
"S _ g/
1 U a

Loy Q

"ﬁ w._ — | N
L

15

Crash Example

, A
: 0
! O
; —
, b_
, Q
' Q
" rol
I P —
, | ©
_ 9%
v %R 0 ¢
1) r_/
v I
TR B
.O o

1 . ° Ol.
< 83
"»cnu % | O
e
' O i 0 O
I 3 0O D
"S _ g9 M
1 U a

Loy Q

"ﬁ w._ —
L

15

Number of Instances

1000 -

800 -

600 -

400

200 1

- ReadOnly

193

- Crash

409

Ext3

Ext4

829

Btrfs

16

Read-only and crash are

common in modern file systems

Over 677 of global failures will
crash the system

Q2:

What are the root causes

of global failures ?

Global Failure Causes

Global Failure Causes

Metadata corruption

- metadata inconsistency is detected
- e.g.,a block/inode bitmap corruption

Metadata Corruption Example

ext3 check dir entry(...){

1 rlen = ext3 rec len from disk();
2 1f (rlen < EXT3 DIR REC LEN(1)){
error = “rec len 1s too small”;
3 ext3 error(sb, error);
}

20

Metadata Corruption Example

ext3 check dir entry(...){

1 rlen = ext3 rec len from disk();
2 1f (rlen < EXT3 DIR REC LEN(1)){
error = “rec len 1s too small”;
3 ext3 error(sb, error);
}

20

Metadata Corruption Example

ext3 check dir entry(...){

1 rlen = ext3 rec len from disk();
2 1f (rlen < EXT3 DIR REC LEN(1)){
error = “rec _len 1s too small”;
3 ext3 error(sb, error);
'

20

Metadata Corruption Example

ext3 check dir entry(...){

1 rlen = ext3 rec len from disk();
2 1f (rlen < EXT3 DIR REC LEN(1)){
error = “rec len 1s too small”;
3 ext3 error(sb, error);
}

20

Global Failure Causes

Metadata corruption

- metadata inconsistency is detected
- e.g.,a block/inode bitmap corruption

/O failure

- metadata |/O failure and journaling failure
- e.g, fail to read an inode block

/O Failure Example

empty dir(...){

1 bh = ext4 bread(NULL, i1node, &err);
1f (bh && err)
2 EXT4 ERROR INODE (1inode,
“fail to read directory block”);

22

/O Failure Example

empty dir(...){

1 bh = ext4 bread(NULL, i1node, &err);
1f (bh && err)
2 EXT4 ERROR INODE (1inode,
“fail to read directory block”);

22

/O Failure Example

empty dir(...){

1 bh = ext4 bread(NULL, i1node, &err);
1f (bh && err)
2 EXT4 ERROR INODE (1inode,
“fail to read directory block”);

22

/O Failure Example

empty dir(...){

1 bh = ext4 bread(NULL, i1node, &err);
1f (bh && err)
2 EXT4 ERROR INODE (1inode,
“fail to read directory block”);

22

Global Failure Causes

Metadata corruption

- metadata inconsistency is detected
- e.g.,a block/inode bitmap corruption

/O failure

- metadata |/O failure and journaling failure
- e.g, fail to read an inode block

Software bugs

- unexpected states detected
- e.g., allocated block is not in a valid range

Software Bug Example

ext3 rsv window add(...){

E 1 1f (start < this->rsv start)

E p = &(*p)->rb->left;

2 else if (start > this->rsv end)
. p = &(*p)->rb->right;

E 3 else {

E rsv window dump(root, 1);

E 4 BUG() ;

24

Software Bug Example

ext3 rsv window add(...){

E 1 1f (start < this->rsv start)

E p = &(*p)->rb->left;

2 else if (start > this->rsv end)
. p = &(*p)->rb->right;

E 3 else {

E rsv window dump(root, 1);

E 4 BUG() ;

24

Software Bug Example

ext3 rsv window add(...){

E 1 1f (start < this->rsv start)

E p = &(*p)->rb->left;

(2 else if (start > this->rsv end)
. p = &(*p)->rb->right;

E 3 else {

E rsv window dump(root, 1);

E 4 BUG() ;

24

Software Bug Example

ext3 rsv window add(...){

E 1 1f (start < this->rsv start)

E p = &(*p)->rb->left;

2 else if (start > this->rsv end)
. p = &(*p)->rb->right;

E 3 else {

E rsv window dump(root, 1);

E 4 BUG() ;

24

Software Bug Example

ext3 rsv window add(...){

E 1 1f (start < this->rsv start)

E p = &(*p)->rb->left;

2 else if (start > this->rsv end)
. p = &(*p)->rb->right;

E 3 else {

E rsv window dump(root, 1);

E 4 BUG() ;

24

Data Structure | MC IOF SB Shared
b-bitmap | 2 2 Yes
1-bitmap | 1 1 Yes
inode | 1 2 2 Yes
super | 1 Yes
dir-entry | 4 4 3 Yes
gdt| 3 2 Yes
indir-blk | 1 1 No
xattr | 5 2 1 No

EXt3 block 5 Yes/No
journal 3 277 Yes
journal _head 31 Yes
buf_head 16 Yes
handle 22 9 Yes
transaction 28 Yes
revoke 2 Yes

other | 1 11 Yes/No

Total | 19 37 137 =193

Data Structure | MC IOF SB Shared
b-bitmap | 2 2 Yes
1-bitmap || 1 1 Yes
inode|| 1 2 2 Yes
super | |1 Yes
dir-entry || 4 4 3 Yes
gdt/| 3 2 Yes
indir-blk || 1 1 No
xattr{| 5 2 1 No

EXt3 block 5 Yes/No
journal 3 277 Yes
journal _head 31 Yes
buf_head 16 Yes
handle 22 9 Yes
transaction 28 Yes
revoke 2 Yes

other|| 1 11 Yes/No

Total | 19 37 137 =193

Data Structure | MC IOF SB Shared
b-bitmap || 2 2 Yes
1-bitmap || 1 1 Yes
inode || 1 2 2 Yes
super || 1 Yes
dir-entry || 4 4 3 Yes
gdt || 3 2 Yes
indir-blk || 1 1 No
xattr || 5 2 1 No

EXt3 block 5 | Yes/No
journal 3 277 Yes
journal _head 31 Yes
buf_head 16 Yes
handle 22 9 Yes
transaction 28 Yes
revoke 2 Yes

other || 1 11 ' Yes/No

Total | 19 37 137! =193

Data Structure | MC IOF SB |Shared
b-bitmap | 2 2 Yes
1-bitmap | 1 1 Yes
inode | 1 2 2 Yes
super | 1 Yes
dir-entry | 4 4 3 Yes
gdt| 3 2 Yes
indir-blk | 1 1 No
xattr | 5 2 1 No

EXt3 block 5 | Yes/No
journal 3 277 Yes
journal _head 31 Yes
buf_head 16 Yes
handle 22 9 Yes
transaction 28 Yes
revoke 2 Yes

other | 1 11 | Yes/No

Total | 19 37 137 | =193

Data Structure | MC IOF SB Shared
b-bitmap | 2 2 Yes
1-bitmap | 1 1 Yes
inode | 1 2 2 Yes
super | 1 Yes
dir-entry | 4 4 3 Yes
gdt| 3 2 Yes
indir-blk | 1 1 No
xattr | 5 2 1 No

EXt3 block 5 Yes/No
journal 3 277 Yes
journal _head 31 Yes
buf_head 16 Yes
handle 22 9 Yes
transaction 28 Yes
revoke 2 Yes

other | 1 11 Yes/No

Total | 19 37 137 =193

Data Structure | MC IOF SB Shared
b-bitmap | 2 2 Yes
1-bitmap | 1 1 Yes
inode | 1 2 2 Yes
super | 1 Yes
dir-entry | 4 4 3 Yes
gdt| 3 2 Yes
indir-blk | 1 1 No
xattr | 5 2 1 No

EXt3 block 5 Yes/No
journal 3 277 Yes
journal _head 31 Yes
buf_head 16 Yes
handle 22 9 Yes
transaction 28 Yes
revoke 2 Yes

other | 1 11 Yes/No

Total | 19 37 137 =193

Data Structure | MC IOF SB Shared
b-bitmap | 2 2 Yes
1-bitmap | 1 1 Yes
inode | 1 2 2 Yes
super | 1 Yes
dir-entry | 4 4 3 Yes
gdt| 3 2 Yes
indir-blk | 1 1 No
xattr | 5 2 1 No

EXt3 block 5 Yes/No
journal 3 277 Yes
journal _head 31 Yes
buf_head 16 Yes
handle 22 9 Yes
transaction 28 Yes
revoke 2 Yes

other | 1 11 Yes/No

Total | 19 37 137 =193

26

All global failures are caused by
metadata and System

states

All global failures are caused by
metadata and System

states

Both local and shared
metadata can cause global failures

All global failures are caused by
metadata and System

states

Both local and shared
metadata can cause global failures

Not Only Local File Systems

Not Only Local File Systems

Shared-disk file systems OCFS2

- inspired by Ext3 design
= used in virtualization environment
= host virtual machine images
= allow multiple Linux guests to share a file system

Not Only Local File Systems

Shared-disk file systems OCFS2

- inspired by Ext3 design
= used in virtualization environment
= host virtual machine images
= allow multiple Linux guests to share a file system

Global failures are also prevalent

- a single piece of corrupted metadata can fail the
whole file system on multiple nodes !

Current Abstractions

Current Abstractions

File and directory
-~ metadata is shared for different files or directories

Current Abstractions

File and directory
-~ metadata is shared for different files or directories

Namespace

= virtual machines, Chroot, BSD jail, Solaris Zones
= multiple namespaces still share a file system

Current Abstractions

File and directory
-~ metadata is shared for different files or directories

Namespace

= virtual machines, Chroot, BSD jail, Solaris Zones
= multiple namespaces still share a file system

Partitions

= multiple file systems on separated partitions

= a single panic on a partition can crash the whole
operating system

= static partitions, dynamic partitions

= management of many partitions

28

29

All files on a file system implicitly share

a single fault domain

All files on a file system implicitly share

a single fault domain

All files on a file system implicitly share

a single fault domain

Current file-system abstractions do NOot

provide fine-grained fault isolation

Isolation File Systems

New Abstraction
Fault Isolation
Quick Recovery

Preliminary Implementation on Ext3

Challenges

30

Isolation File Systems

Isolation File Systems

Fine-grained partitioned
- files are isolated into separated domains

Isolation File Systems

Fine-grained partitioned
- files are isolated into separated domains

Independent
= faulty units will not affect healthy units

Isolation File Systems

Fine-grained partitioned
- files are isolated into separated domains

Independent
= faulty units will not affect healthy units

Fine-grained recovery
= repair a faulty unit quickly
= instead of checking the whole file system

Isolation File Systems

Fine-grained partitioned
- files are isolated into separated domains

Independent
= faulty units will not affect healthy units

Fine-grained recovery
= repair a faulty unit quickly
= instead of checking the whole file system

Elastic
= dynamically grow and shrink its size

New Abstraction

New Abstraction

File Pod

= an abstract partition

=~ contains a group of files and related metadata
= an independent fault domain

New Abstraction

File Pod

= an abstract partition

=~ contains a group of files and related metadata
= an independent fault domain

Operations

- create a file pod

- set / get file pod’s attributes
= failure policy
= recovery policy

= bind / unbind a file to pod

- share a file between pods

34

Fault Isolation
Quick Recovery

Preliminary Implementation on Ext3

Challenges

Metadata Isolation

Metadata Isolation

Observation

= metadata is organized in a shared manner
= hard to isolate a failure for metadata

36

Metadata Isolation

Observation

= metadata is organized in a shared manner
= hard to isolate a failure for metadata

For example
= multiple inodes are stored in a single inode block

an inode block

36

Metadata Isolation

Observation

= metadata is organized in a shared manner
= hard to isolate a failure for metadata

For example

= multiple inodes are stored in a single inode block
= an |/O failure can affect multiple files

/ a block read failure

an inode block

36

37

Key Idea |:

Key Idea |:

Isolate metadata for file pods

L ocalize Failures

L ocalize Failures

Local Failures
- convert global failures to local failures
- same failure semantics
= only fail the faulty pod

38

L ocalize Failures

L ocal Failures

- convert global failures to local failures
- same failure semantics
= only fail the faulty pod

Read-Only
- mark a file pod as Read-Only

38

L ocalize Failures

L ocal Failures

- convert global failures to local failures
- same failure semantics
= only fail the faulty pod

Read-Only
- mark a file pod as Read-Only

Crash

- crash a file pod instead of the whole system
= provide the same initial states after crash

38

39

\ /
/
N 7’
; - =

e.g., corruption

40

Y

{
\ I
\

I

I
|

-
7”7
/7
/
/
_
\
\
N\
~

\
7\
B - I

e.g., corruption

40

Quick Recovery

Preliminary Implementation on Ext3

Challenges

Quick Recovery

Quick Recovery

File system recovery is slow

= a small error requires a full check
= many random read requests
= 7/ hours to sequentially read a 2 TB disk

43

a small
fault
full check
(slow!)

requires a

43

a small
fault
full check
(slow!)

requires a

43

44

Key ldea 2:

Key ldea 2:

Minimize the file system checking
range during recovery

Quick Recovery

Quick Recovery

Metadata Isolation

- file pod as the unit of recovery
= check and recover independently
= both online and offline

Quick Recovery

Metadata Isolation

- file pod as the unit of recovery
= check and recover independently
= both online and offline

When recover !
=~ leverage internal detection mechanism

Quick Recovery

Metadata Isolation

- file pod as the unit of recovery
= check and recover independently
= both online and offline

When recover !
=~ leverage internal detection mechanism

How to recover more efficiently !

= only check the faulty pod
-~ narrow down to certain data structures

45

Preliminary Implementation on Ext3

Challenges

Ext3 Layout

Ext3 Layout

A disk is divided into block groups
= physical partition for disk locality

Ext3 Layout

A disk is divided into block groups
= physical partition for disk locality

disk layout

Ext3 Layout

A disk is divided into block groups
= physical partition for disk locality

disk layout

; one block group
sB GDTs BM IM . Blocks === Blocks

48

'L.E—I_'-_ T ﬂ multiple files can
e M o) share a single

e e
L"_L'--'- B block group
!l.-- i

48

'L.E—I_'-_ T ﬂ multiple files can
Ty] share a single
e @ block group

48

'L'-'-L-'--' ﬂ multiple files can
s e n| share asingle

L'T'-L-r--'- = B block group
_'- i [e ,l
l .

48

0
]

a

multiple files can
share a single

E block group

48

0
]

a

multiple files can
share a single

E block group

48

L et ﬂ multiple files can
'—_-—_ i - a share a single
[e a block group

L “

one file can span o T
multiple block groups e e

48

L et ﬂ multiple files can
'—_-—_ i - a share a single
[e a block group

L “

< fpes

one file can span o T
multiple block groups e =

48

L et ﬂ multiple files can
'—_-—_ i - a share a single
[e a block group

L “

< o=

one file can span o T
multiple block groups e =

48

L et ﬂ multiple files can
'—_-—_ i - a share a single
[e a block group

L “

one file can span o T
multiple block groups e =

48

L et ﬁ multiple files can
'—_-—_ o - @ share a single
: _ -___ & ! a block group

one file can span o T
multiple block groups L

48

Layout

Layout

A file pod contains multiple block groups

- one block group only maps to one file pod
- performance locality and fault isolation

Layout

A file pod contains multiple block groups

- one block group only maps to one file pod
- performance locality and fault isolation

PODI POD2 POD3

disk layout

49

Data Structures

Data Structures

Pod related structure
= NO extra mapping structures

Data Structures

Pod related structure

= No extra mapping structures
= embeds in group descriptors
= group descriptors are loaded into memory

pod

4

sSB GDTs BM IM . Blocks = == Blocks

a block group

Algorithms

Algorithms

Pod based inode and block allocation

- preserve original allocation’s locality
= allocation will not cross pod boundary

51

52

|. within the same pod

2.an empty block group

Algorithms

Algorithms

Pod based inode and block allocation

- preserve original allocation’s locality
= allocation will not cross pod boundary

De-fragmentation
- potential internal fragmentation

53

Algorithms

Pod based inode and block allocation

- preserve original allocation’s locality
= allocation will not cross pod boundary

De-fragmentation

- potential internal fragmentation
- de-fragmentation for file pods
= similar solution in Ext4

53

Journaling

Journaling

Virtual transaction
= contains updates only from one pod

Pod | Pod 2 Pod 3

Tl 12 T3

/[

On-disk journal

independent
transactions

54

Journaling

Virtual transaction

= contains updates only from one pod
- better performance isolation

Pod | Pod 2 Pod 3

Tl 12 T3

/[

On-disk journal

independent
transactions

54

Journaling

Virtual transaction

= contains updates only from one pod
- better performance isolation
= commit multiple virtual transactions in parallel

Pod | Pod 2 Pod 3

independent

transactions
T T2 T3

/ // journal reservation

shared journal

On-disk journal

54

Introduction
Study of Failure Policies

Isolation File Systems

New Abstraction
Fault Isolation
Quick Recovery

Preliminary Implementation on Ext3

Challenges

55

Status

Status
What we did

= a simple prototype for Ext3
= provide readonly isolation

Status
What we did

= a simple prototype for Ext3
= provide readonly isolation

What we plan to do
= crash isolation

Status
What we did

= a simple prototype for Ext3
= provide readonly isolation

What we plan to do

= crash isolation
= quick recovery after failure

Status
What we did

= a simple prototype for Ext3
= provide readonly isolation

What we plan to do
= crash isolation
= quick recovery after failure
- other file systems: Ext4 and Btrfs

Challenges

Challenges

Metadata isolation

=~ tree-based directory structure
- globally shared metadata: super block, journal
= shared system states: block allocation tree

57

Challenges

Metadata isolation

=~ tree-based directory structure
- globally shared metadata: super block, journal
= shared system states: block allocation tree

| ocal failure

= is it correct to continue to run !
- light-weight, stateless crash for a pod

57

Challenges

Metadata isolation

=~ tree-based directory structure
- globally shared metadata: super block, journal
= shared system states: block allocation tree

| ocal failure

= is it correct to continue to run !
- light-weight, stateless crash for a pod

Performance

- potential overhead of managing pods
= better performance isolation
= better scalability

57

58

Failure is not an option.

Failure is not an option.
-- NASA

59

Global failure is not an option;

Global failure is not an option;

local failure with quick recovery

Global failure is not an option;

local failure with quick recovery

IS an option.

Global failure is not an option;

local failure with quick recovery

IS an option.

-- Isolation File Systems

60

Questions !

