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File-System Availability Is Critical

Main data access interface
- desktop, laptop, mobile devices, file servers

A wide range of failures

= resource allocation, metadata corruption
- failed 1/O operations, incorrect system states

A small fault can cause global failures
- e.g., a single bit can impact the whole file system

Global failures considered harmful
= read-only, crash
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Our Solution

A new abstraction for fault isolation

= support multiple independent fault domains
= protect a group of files for a domain

Isolation file systems

- fine-grained fault isolation
= quick recovery




Study of Failure Policies
Isolation File Systems
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What global failure policies are used ?

= failure types
= number of each type

What are the root causes of global failures ?

- related data structures
- number of each cause
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Methodology

Three major file systems

- Ext3 (Linux 2.6.32), Ext4 (Linux 2.6.32)
= Btrfs (Linux 3.8)

Analyze source code

- identify types of global failures
= count related error handling functions
- correlate global failures to data structures




Ql:

what global failure policies

are used !
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Global Failure Policies

Definition

= a failure which impacts all users of the file system or
even the operating system




Global Failure Policies

Definition

= a failure which impacts all users of the file system or
even the operating system

Read-Only

- e.g.,ext3_error():
= mark file system as read-only
= abort the journal




Read-Only Example

read block bitmap(...){

bitmap blk = desc->bg block bitmap;
bh = sb getblk(sb, bitmap blk);
1f (!bh){
ext3 error(sb, “Cannot read block
bitmap”);

= W N K

return NULL;
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Global Failure Policies

Definition

= a failure which impacts users of the file system or
even the operating system

Read-Only

- e.g.,ext3_error():
= mark file system as read-only
= abort the journal

Crash
- e.g., BUG(), ASSERT (), panic()
= crash the file system or operating system
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Read-only and crash are

common in modern file systems

Over 677 of global failures will
crash the system




Q2:

What are the root causes

of global failures ?
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Global Failure Causes

Metadata corruption

- metadata inconsistency is detected
- e.g.,a block/inode bitmap corruption




Metadata Corruption Example

ext3 check dir entry(...){

1 rlen = ext3 rec len from disk();
2 1f (rlen < EXT3 DIR REC LEN(1)){
error = “rec len 1s too small”;
3 ext3 error(sb, error);
}
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Metadata Corruption Example

ext3 check dir entry(...){

1 rlen = ext3 rec len from disk();
2 1f (rlen < EXT3 DIR REC LEN(1)){
error = “rec _len 1s too small”;
3 ext3 error(sb, error);
'

20



Metadata Corruption Example

ext3 check dir entry(...){

1 rlen = ext3 rec len from disk();
2 1f (rlen < EXT3 DIR REC LEN(1)){
error = “rec len 1s too small”;
3 ext3 error(sb, error);
}
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Global Failure Causes

Metadata corruption

- metadata inconsistency is detected
- e.g.,a block/inode bitmap corruption

/O failure

- metadata |/O failure and journaling failure
- e.g, fail to read an inode block




/O Failure Example

empty dir(...){

1 bh = ext4 bread(NULL, i1node, &err);
1f (bh && err)
2 EXT4 ERROR INODE (1inode,
“fail to read directory block”);
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Global Failure Causes

Metadata corruption

- metadata inconsistency is detected
- e.g.,a block/inode bitmap corruption

/O failure

- metadata |/O failure and journaling failure
- e.g, fail to read an inode block

Software bugs

- unexpected states detected
- e.g., allocated block is not in a valid range




Software Bug Example

ext3 rsv window add(...){

E 1 1f (start < this->rsv start)

E p = &(*p)->rb->left;

2 else if (start > this->rsv end)
. p = &(*p)->rb->right;

E 3 else {

E rsv window dump(root, 1);

E 4 BUG() ;
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Data Structure | MC IOF SB Shared
b-bitmap | 2 2 Yes
1-bitmap | 1 1 Yes
inode | 1 2 2 Yes
super | 1 Yes
dir-entry | 4 4 3 Yes
gdt| 3 2 Yes
indir-blk | 1 1 No
xattr | 5 2 1 No

EXt3 block 5  Yes/No
journal 3 277 Yes
journal _head 31 Yes
buf_head 16 Yes
handle 22 9 Yes
transaction 28 Yes
revoke 2 Yes

other | 1 11  Yes/No

Total | 19 37 137 =193
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Not Only Local File Systems

Shared-disk file systems OCFS2

- inspired by Ext3 design
= used in virtualization environment
= host virtual machine images
= allow multiple Linux guests to share a file system

Global failures are also prevalent

- a single piece of corrupted metadata can fail the
whole file system on multiple nodes !
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Current Abstractions

File and directory
-~ metadata is shared for different files or directories

Namespace

= virtual machines, Chroot, BSD jail, Solaris Zones
= multiple namespaces still share a file system

Partitions

= multiple file systems on separated partitions

= a single panic on a partition can crash the whole
operating system

= static partitions, dynamic partitions

= management of many partitions
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All files on a file system implicitly share

a single fault domain
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All files on a file system implicitly share

a single fault domain

Current file-system abstractions do NOot

provide fine-grained fault isolation




Isolation File Systems

New Abstraction
Fault Isolation
Quick Recovery

Preliminary Implementation on Ext3

Challenges
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Isolation File Systems

Fine-grained partitioned
- files are isolated into separated domains

Independent
= faulty units will not affect healthy units

Fine-grained recovery
= repair a faulty unit quickly
= instead of checking the whole file system

Elastic
= dynamically grow and shrink its size
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New Abstraction

File Pod

= an abstract partition

=~ contains a group of files and related metadata
= an independent fault domain

Operations

- create a file pod

- set / get file pod’s attributes
= failure policy
= recovery policy

= bind / unbind a file to pod

- share a file between pods
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Fault Isolation
Quick Recovery

Preliminary Implementation on Ext3

Challenges




Metadata Isolation




Metadata Isolation

Observation

= metadata is organized in a shared manner
= hard to isolate a failure for metadata
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Metadata Isolation

Observation

= metadata is organized in a shared manner
= hard to isolate a failure for metadata

For example

= multiple inodes are stored in a single inode block
= an |/O failure can affect multiple files

/ a block read failure

an inode block

36
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Key Idea |:




Key Idea |:

Isolate metadata for file pods




L ocalize Failures




L ocalize Failures

Local Failures
- convert global failures to local failures
- same failure semantics
= only fail the faulty pod
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L ocalize Failures

L ocal Failures

- convert global failures to local failures
- same failure semantics
= only fail the faulty pod

Read-Only
- mark a file pod as Read-Only

Crash

- crash a file pod instead of the whole system
= provide the same initial states after crash

38



39



\ /
/
N 7’
; - =

e.g., corruption

40



Y

{
\ I
\

I

I
|

-
7”7
/7
/
/
_
\
\
N\
~

\
7\
B - I

e.g., corruption

40



Quick Recovery

Preliminary Implementation on Ext3

Challenges




Quick Recovery




Quick Recovery

File system recovery is slow

= a small error requires a full check
= many random read requests
= 7/ hours to sequentially read a 2 TB disk
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Key ldea 2:




Key ldea 2:

Minimize the file system checking
range during recovery
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Quick Recovery

Metadata Isolation

- file pod as the unit of recovery
= check and recover independently
= both online and offline

When recover !
=~ leverage internal detection mechanism

How to recover more efficiently !

= only check the faulty pod
-~ narrow down to certain data structures
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Preliminary Implementation on Ext3

Challenges
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Ext3 Layout

A disk is divided into block groups
= physical partition for disk locality

disk layout

; one block group
sB GDTs BM IM . Blocks === Blocks
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Layout

A file pod contains multiple block groups

- one block group only maps to one file pod
- performance locality and fault isolation

PODI POD2 POD3

disk layout
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Data Structures

Pod related structure
= NO extra mapping structures




Data Structures

Pod related structure

= No extra mapping structures
= embeds in group descriptors
= group descriptors are loaded into memory

pod

4

sSB GDTs BM IM . Blocks = == Blocks

a block group
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Algorithms

Pod based inode and block allocation

- preserve original allocation’s locality
= allocation will not cross pod boundary
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|. within the same pod

2.an empty block group




Algorithms




Algorithms

Pod based inode and block allocation

- preserve original allocation’s locality
= allocation will not cross pod boundary

De-fragmentation
- potential internal fragmentation
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Algorithms

Pod based inode and block allocation

- preserve original allocation’s locality
= allocation will not cross pod boundary

De-fragmentation

- potential internal fragmentation
- de-fragmentation for file pods
= similar solution in Ext4
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Journaling

Virtual transaction
= contains updates only from one pod

Pod | Pod 2 Pod 3

Tl 12 T3

/[

On-disk journal

independent
transactions
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Journaling

Virtual transaction

= contains updates only from one pod
- better performance isolation

Pod | Pod 2 Pod 3

Tl 12 T3

/[

On-disk journal

independent
transactions
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Journaling

Virtual transaction

= contains updates only from one pod
- better performance isolation
= commit multiple virtual transactions in parallel

Pod | Pod 2 Pod 3

independent

transactions
T T2 T3

/ // journal reservation

shared journal

On-disk journal
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Introduction
Study of Failure Policies

Isolation File Systems

New Abstraction
Fault Isolation
Quick Recovery

Preliminary Implementation on Ext3

Challenges
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Status
What we did

= a simple prototype for Ext3
= provide readonly isolation

What we plan to do
= crash isolation
= quick recovery after failure
- other file systems: Ext4 and Btrfs
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Challenges

Metadata isolation

=~ tree-based directory structure
- globally shared metadata: super block, journal
= shared system states: block allocation tree
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Challenges

Metadata isolation

=~ tree-based directory structure
- globally shared metadata: super block, journal
= shared system states: block allocation tree

| ocal failure

= is it correct to continue to run !
- light-weight, stateless crash for a pod

Performance

- potential overhead of managing pods
= better performance isolation
= better scalability

57
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Failure is not an option.




Failure is not an option.
-- NASA
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Global failure is not an option;

local failure with quick recovery

IS an option.

-- Isolation File Systems
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Questions !




