Data Driven Connectivity

Junda Liu, *Aurojit Panda*, Ankit Singla, Brighten Godfrey, Michael Schapira, Scott Shenker

- Routing is a **control plane** operation.
 - Operates in the order of milliseconds.

- Routing is a **control plane** operation.
 - Operates in the order of milliseconds.
- Packet forwarding is a data plane operation.
 - Operates in the order of microseconds.

• Some users require low latency packet delivery.

- Some users require low latency packet delivery.
- Some users require high reliability.

- Some users require low latency packet delivery.
- Some users require high reliability.
- Control Plane response to link failure is too slow.

Rely on precomputed backup paths

- Rely on precomputed backup paths
 - Typically support single link failures.

- Rely on precomputed backup paths
 - Typically support single link failures.
 - State grows exponentially for more links.

- Rely on precomputed backup paths
 - Typically support single link failures.
 - State grows exponentially for more links.
- Hard to generalize. Hard to configure.

Routing is the Problem!

- Routing conflates two functions
 - Optimality Use good paths
 - Inherently global, requires coordination.
 - Connectivity Deliver packets
 - Can it be local?

• Can we push connectivity to the data plane?

- Can we push connectivity to the data plane?
- What would it take?

- Can we push connectivity to the data plane?
- What would it take?
 - No FIB changes at packet rate.

- Can we push connectivity to the data plane?
- What would it take?
 - No FIB changes at packet rate.
 - No additional data in packet header.

- Can we push connectivity to the data plane?
- What would it take?
 - No FIB changes at packet rate.
 - No additional data in packet header.
 - Impossible

- Can we push connectivity to the data plane?
- What would it take?
 - No FIB changes at packet rate.
 - No additional data in packet header.
 - Impossible

- Relax constraints
 - Change a few bits in FIB at packet rates.
- Clearly feasible, but is it enough?

Guaranteeing Connectivity

1. Take advantage of available redundancy.

Guaranteeing Connectivity

Take advantage of available redundancy.
 Restore connectivity at data speeds.

Guaranteeing Connectivity

Take advantage of available redundancy.
 Restore connectivity at data speeds.
 Achieve optimality at control speeds.

Using Redundancy: DAGs

Using Redundancy: DAGs

• Current paths to a destination do not use all links

Using Redundancy: DAGs

- Current paths to a destination do not use all links
- Extend routing tables to increase redundancy.

Restoring Connectivity

• Link failure can disconnect a DAG.

- Link failure can disconnect a DAG.
- Disconnected node reverses all links to point out.

- Link failure can disconnect a DAG.
- Disconnected node reverses all links to point out.
- Finite set of reversals reconnect DAG.

Reversals in Data Plane

Two challenges must be addressed

Reversals in Data Plane

- Two challenges must be addressed
 - Notifications can be lost.

Reversals in Data Plane

- Two challenges must be addressed
 - Notifications can be lost.
 - Notifications can be delayed.

Walk Through

Walk Through

Walk Through

Local Sequence

Local Sequence Remote Sequence

·Reverse link direction

Reverse link direction
 Increment Local Sequence

•Reverse link direction •Reverse link direction •Increment Local Sequence •Forward packet

Receive on link pointing OUT

Receive on link pointing OUTCompare sequence numbers

Receive on link pointing OUT
Compare sequence numbers
See if anything changed

Local Sequence Remote Sequence → Reversible Receive on link pointing OUT
Compare sequence numbers
See if anything changed
Reverse link

Cannot interfere with data plane.

- Cannot interfere with data plane.
- Build a safe primitive

- Cannot interfere with data plane.
- Build a safe primitive
 - Set all edges of a node to point out

- Cannot interfere with data plane.
- Build a safe primitive
 - Set all edges of a node to point out
- Described in paper

Evaluation

Evaluation Overview

- Test on WAN and datacenter topologies
 - Stretch, Throughput, Latency
- Effect of FIB update delays
 - On latency and throughput
- End-to-end benefits of using DDC.

Evaluation Overview

- Test on WAN and datacenter topologies
 - Stretch, Throughput, Latency
- Effect of FIB update delays
 - On latency and throughput
- End-to-end benefits of using DDC.

End-to-End Test

- 8 Pod FatTree
- Partition aggregate workload
- 5 link failures
- Simulated effect for 550 seconds

With DDC + Without DDC O

- Bucketed 10 second intervals.
- Percentage requests satisfied.

- What is the impact of delayed FIB changes
 - On packet latency?
 - Three link failure: all traffic in test affected.
 - Focus on behavior before convergence.

- What is the impact of delayed FIB changes
 - On TCP throughput?
 - Use a WAN topology (AS 2914)
 - 1 Gbps links
 - 5 link failures

In the Same Vein...

- FCP (SIGCOMM '07)
 - Unbounded bits in header
 - Extensive FIB changes on failure packet
- Packet Re-Cycling (HotNets '10)
 - First solve an NP-Complete problem.
 - log(network diameter) bits in header.
 - DDC is simpler.

Potential Impact

ASICs implement DDC

•Connectivity guaranteed by the data plane.

•Control Plane focuses on optimality/functionality.

