
Creating A Distributed Round Robin
Scheduler with Etcd
A developer learns some things about distributed systems and
reliability

Eric Chlebek
Software Developer, Sensu

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

1 of 67 10/29/19, 4:25 PM

About Me

https://github.com/echlebek (https://github.com/echlebek)

https://lisa19-etcd.herokuapp.com/talk.slide#1 (https://lisa19-etcd.herokuapp.com/talk.slide#1)

Works @ Sensu on the Sensu Go monitoring project.

Experience in HPC, Bioinformatics, Ad-tech, Systems Monitoring.

2

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

2 of 67 10/29/19, 4:25 PM

Introduction

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

3 of 67 10/29/19, 4:25 PM

Introduction

4

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

4 of 67 10/29/19, 4:25 PM

Introduction

Sensu is a monitoring framework for heterogeneous systems.

For the purposes of this talk, Sensu is a scheduler for executing host-based checks on
subscriber nodes.

Round robin scheduling is one of the key features of Sensu's scheduler. 5

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

5 of 67 10/29/19, 4:25 PM

Introduction

By default, all systems execute their subscribed checks at every scheduling interval.

Some use cases are better suited a round-robin mode of scheduling (load-balanced
websites, network switches)

Classic Sensu relied on RabbitMQ for round-robin scheduling, and Redis for state. 6

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

6 of 67 10/29/19, 4:25 PM

Introduction

by

Classic Sensu uses RabbitMQ as a broker to distribute tasks to clients.

Single leader responsible for sending tasks to the queue.

Randomized consumption of tasks by clients.

In clustered/HA scenario, failure of the leader could be troublesome. 7

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

7 of 67 10/29/19, 4:25 PM

Introduction

Classic Sensu Architecture 8

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

8 of 67 10/29/19, 4:25 PM

Introduction

Sensu Go Architecture 9

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

9 of 67 10/29/19, 4:25 PM

Introduction

Sensu Go is built around etcd, and does not support RabbitMQ.

I needed to come up with a model for round robin scheduling on etcd.

I didn't want to follow the single leader pattern.

I wanted round-robin scheduling to be as reliable as the store itself.

Need to tolerate the loss of either scheduler or worker nodes.

Would be nice to have a stable ordering of execution for round robin workers. 10

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

10 of 67 10/29/19, 4:25 PM

Introduction

A distributed, reliable key-value store for the most critical data of a distributed system (etcd.io)

Etcd is a distributed key-value database that uses Raft consensus.

Written in Go. No Java or C components.

Cross platform. Works on most Go compilation targets.

Uses the BoltDB embedded database, optimized for SSDs.

Uses gRPC as a transport, efficient RPC communication between peers and clients. 11

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

11 of 67 10/29/19, 4:25 PM

Why etcd?

Strongly consistent distributed key-value store.

Benchmarked at tens of thousands of transactions per second.

Can survive the loss of (n / 2) - 1 members.

MVCC transaction model.

Can be embedded in Go applications, no need for external dependency.

Our goal was to enable a straightforward clustering story for Sensu Go. 12

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

12 of 67 10/29/19, 4:25 PM

Raft

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

13 of 67 10/29/19, 4:25 PM

Raft Consensus Algorithm

14

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

14 of 67 10/29/19, 4:25 PM

Raft Consensus Algorithm

Created by Diego Ongaro and John Ousterhout at Stanford.

Their goal was to replace Paxos (Leslie Lamport).

Designed to maximize understandability.

An algorithm for managing a replicated state machine and log. 15

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

15 of 67 10/29/19, 4:25 PM

Raft Consensus Algorithm

Why is it called raft?

A raft is several logs tied together...

A replicated log... 16

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

16 of 67 10/29/19, 4:25 PM

Raft Consensus Algorithm

17

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

17 of 67 10/29/19, 4:25 PM

Raft Consensus Algorithm

Raft is a consensus algorithm that is designed to maximize understandability.

The algorithm manages a replicated state machine and log.

Equivalent to Multi-Paxos, in power and efficiency.

All algorithms of this class require a heartbeat, so raft has one too.

Timeouts determine if a member is no longer alive. 18

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

18 of 67 10/29/19, 4:25 PM

Raft

What is a log?

A log is an append-only data structure.

What is a state machine?

A state machine is a mathematical model for computation. It takes its input from a log.

How does this apply to raft?

Each raft member has a state machine that consumes the replicated log. Because the
log is guaranteed to be the same, the state machines will produce the same outputs.19

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

19 of 67 10/29/19, 4:25 PM

Raft

Raft members are always in one of three states: leader, follower, candidate.

Elections are used to determine the class of each member.

If a follower has not seen a heartbeat for a long time, it establishes itself as a
candidate and initiates an election.

The result of the election process is that the follower will become the leader, or
another cluster member will become the leader, or a timeout will occur. 20

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

20 of 67 10/29/19, 4:25 PM

Raft

x: 7
y: 1
z: 0

State Machine

Consensus
Module

Server

4x 7x1y ...
Log

Replicated state machine architecture 21

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

21 of 67 10/29/19, 4:25 PM

Raft

Consensus algorithms guarantee safety (even with network delays, partitions, and
packet loss, message duplication, and reordering).

They are functional, AKA available, as long as a majority of their members are working
and can communicate with one another.

They do not depend on timing to ensure consistency in their logs. Bad clocks can
cause availability problems at worst. 22

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

22 of 67 10/29/19, 4:25 PM

Raft

Raft has become more popular than Paxos, as it is easier to understand, and
implement.

Few people succeed in understanding Paxos, and it requires great effort to do so.

Even seasoned researchers struggle at understanding Paxos.

23

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

23 of 67 10/29/19, 4:25 PM

Raft

Raft implements consensus by electing a leader, and making that leader responsible
for managing the replicated log.

The leader accepts log entries from clients, replicates them to followers, and tells
them when it is safe to apply the logs to their state machines.

Because the leader has the sole responsibility for managing the replicated log, it is free
to append to the log in any way it likes. 24

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

24 of 67 10/29/19, 4:25 PM

Raft

Raft clusters are available as long as a majority of the members are working.

All raft cluster sizes are odd numbers. (1, 3, 5, 7, 9)

If 4 machines are members of a raft cluster, the cluster size is at least 5. 25

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

25 of 67 10/29/19, 4:25 PM

Raft

When more than (N/2 - 1) raft members fail, the cluster becomes unavailable.

In a net split, the minority partition will not be available.

This is essential to guarantee raft's correctness property. 26

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

26 of 67 10/29/19, 4:25 PM

Raft

The raft algorithm describes an infinitely growing log.

Infinitely growing logs don't work so well in practice...

27

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

27 of 67 10/29/19, 4:25 PM

Raft

Any useful implementation of raft requires some sort of log compaction.

Many raft and paxos systems use snapshotting to deal with log compaction.

Snapshotting can be implemented in various ways.

After a snapshot, the log history to a certain point is compacted into a single entry.

28

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

28 of 67 10/29/19, 4:25 PM

Raft Key Takeaways

Correctly implemented, a store built on raft will always be consistent.

If more than half of a raft cluster fails, the service becomes unavailable.

If a raft cluster is split in two, the smaller half becomes unavailable, while the larger
half remains available, as long as it has a sufficient number of nodes. 29

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

29 of 67 10/29/19, 4:25 PM

Back to etcd

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

30 of 67 10/29/19, 4:25 PM

etcd API

What does the etcd API offer?

Key-value storage (range, put, delete)

Multi-version concurrency control

Transactions (single round trip)

Leases

Watchers 31

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

31 of 67 10/29/19, 4:25 PM

KV Storage

32

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

32 of 67 10/29/19, 4:25 PM

KV Storage

33

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

33 of 67 10/29/19, 4:25 PM

MVCC

34

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

34 of 67 10/29/19, 4:25 PM

Transactions

etcd's transactions are a single round-trip

that means you can't read back a value, and then operate on it, transactionally

but you can execute comparisons server-side 35

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

35 of 67 10/29/19, 4:25 PM

Transactions

func main() {
 ctx := context.Background()

 client := newClient()
 defer client.Close()

 if _, err := client.Put(ctx, "foo", "bar"); err != nil {
 log.Fatal(err)
 }

 _, err := client.Txn(ctx).If(
 etcd.Compare(etcd.Value("foo"), "=", "bar"),
).Then(
 etcd.OpPut("frob", "true"),
).Else(
 etcd.OpPut("frob", "false"),
).Commit()

 if err != nil {
 log.Fatal(err)
 }

 resp, err := client.Get(ctx, "frob")
 if err != nil {
 log.Fatal(err)
 }

36

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

36 of 67 10/29/19, 4:25 PM

 fmt.Println(string(resp.Kvs[0].Value))
}

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

37 of 67 10/29/19, 4:25 PM

Leases

37

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

38 of 67 10/29/19, 4:25 PM

Swiss Alps

38

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

39 of 67 10/29/19, 4:25 PM

Leases (Keepalives)

39

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

40 of 67 10/29/19, 4:25 PM

Leases (Keepalives)

When combined with keepalives, leases offer a powerful primitive for creating etcd
database triggers.

In Sensu, leases are used for implementing vigilance control. When agents haven't
been heard from for a long enough period, a leased key expires, which alerts the
backend to the presence of failure.

Leased keys can be combined with watchers for some interesting control flow
constructs. 40

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

41 of 67 10/29/19, 4:25 PM

Watchers

41

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

42 of 67 10/29/19, 4:25 PM

Leases and Watchers Together

42

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

43 of 67 10/29/19, 4:25 PM

Leases and Watchers Together

43

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

44 of 67 10/29/19, 4:25 PM

Mt. Baker

44

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

45 of 67 10/29/19, 4:25 PM

Lease and Watchers Together

Allows creating a distributed trigger

Semi-durable; can survive cluster downtime, but watch events are dropped if nobody
is watching

Forms the basis of a round-robin ring 45

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

46 of 67 10/29/19, 4:25 PM

Round-robin ring

A round-robin ring is a circular list of workers.

The ring tracks which worker is the next to receive work.

On a configurable interval, the workers travel around the ring, waiting for their turn to
work.

Unlike a token ring, the workers are not responsible for passing tokens to keep the
ring mechanism working. 46

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

47 of 67 10/29/19, 4:25 PM

Round-robin ring

The round-robin ring is operated by one or more schedulers.

Any scheduler can add or remove workers from the ring.

The schedulers compete to advance the ring to the next position. (first write wins,
lock-free)

When a worker's turn to work comes up, every scheduler is notified. (watcher) 47

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

48 of 67 10/29/19, 4:25 PM

Round-robin ring

Workers in the ring are leased; if not kept alive, they will expire.

This prevents the ring from containing workers that have failed. (eventually)

Ring is lexicographically ordered, like etcd keys.

The next worker to work is stored under a "next" key.

If the schedulers notice that a worker has expired, and would have been the next to
work, they compete to advance the ring. 48

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

49 of 67 10/29/19, 4:25 PM

Round-robin ring

Schedulers can fail, need at least one to keep scheduling working.

If all schedulers fail, ring state is maintained.

etcd servers can fail, ring will keep working as long as a majority are healthy.

If etcd loses availability, ring state is maintained until restart. 49

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

50 of 67 10/29/19, 4:25 PM

Round-robin ring

w1 w2 w3 w4 w5 w6

workers

w2
next worker

(head) lease

10s

50

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

51 of 67 10/29/19, 4:25 PM

Round-robin ring

w1 w2 w3 w4 w5 w6

workers

w2
next worker

(head) lease

0s

51

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

52 of 67 10/29/19, 4:25 PM

Round-robin ring

w1 w2 w3 w4 w5 w6

workers

next worker
(head)

schedulers

s1

s2

s3

get w2 + '\0'

52

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

53 of 67 10/29/19, 4:25 PM

Round-robin ring

w1 w2 w3 w4 w5 w6

workers

next worker
(head)

schedulers

s1

s2

s3

lease grant 10s

53

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

54 of 67 10/29/19, 4:25 PM

Round-robin ring

put
w3

w1 w2 w3 w4 w5 w6

workers

next worker
(head)

schedulers

s1

s2

s3

put
w3

54

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

55 of 67 10/29/19, 4:25 PM

Round-robin ring

put
w3

w1 w2 w3 w4 w5 w6

workers

next worker
(head)

schedulers

s1

s2

s3

put
w3

winner

55

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

56 of 67 10/29/19, 4:25 PM

Round-robin ring

put
w3

w1 w2 w3 w4 w5 w6

workers

next worker
(head)

schedulers

s1

s2

s3

put
w3

lease revoke

56

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

57 of 67 10/29/19, 4:25 PM

Round-robin ring

put
w3

w1 w2 w3 w4 w5 w6

workers

next worker
(head)

w3

57

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

58 of 67 10/29/19, 4:25 PM

Testing

Difficult to unit-test this library, eventually gave up.

etcd interfaces are not easy to mock out.

Created integration tests that run reasonably quickly.

Easy to set up multiple etcd instances in a single Go process. 58

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

59 of 67 10/29/19, 4:25 PM

Testing

Early versions of the ring were not very successful!

The first version lacked synchronization between the schedulers, and had unsolvable
concurrency bugs.

Moving the trigger mechanism into etcd, using leases, solved the synchronization
problem. 59

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

60 of 67 10/29/19, 4:25 PM

Testing

etcd failures.

Scheduler failures.

Worker failures.

Any combination of the above. 60

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

61 of 67 10/29/19, 4:25 PM

What have I learned?

The feature-set of etcd is quite interesting, and has some surprisingly powerful
primitives.

Testing complex data structures, and coordination routines, remains tricky. I am still
learning how to best approach this.

Lease expirations are remarkably un-performant. (Linear scan of all leases for every
expiration, solved in etcd 3.4) 61

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

62 of 67 10/29/19, 4:25 PM

"Why didn't you use a regular database?"

It's complicated.

I would always rather use Postgres. It's awesome, and has a richer model for
transactions.

Sometimes working within particular constraints can result in an interesting outcome.62

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

63 of 67 10/29/19, 4:25 PM

"Why didn't you use the single-leader pattern, but with etcd?"

I was fearful of handling leader failure correctly.

I believed that etcd provided the primitives for building a distributed, coordinated data
structure.

I perceived the single-leader pattern to be less reliable.

It seemed more fun to do it this way. 63

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

64 of 67 10/29/19, 4:25 PM

"Does it scale?"

I think so... more testing needed is needed here.

etcd watchers can scale surprisingly high with gRPC proxy - 1M watch events per
second with 20 proxies.

etcd should be able to service hundreds of scheduler nodes, maybe even thousands.

A single scheduler should be able to handle thousands or tens of thousands of
workers. 64

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

65 of 67 10/29/19, 4:25 PM

Open-source implementation

Sensu's round-robin ring is available as a Go library under an MIT license.

https://godoc.org/github.com/sensu/sensu-go/backend/ringv2 (https://godoc.org/github.com/sensu/sensu-

go/backend/ringv2) 65

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

66 of 67 10/29/19, 4:25 PM

Thank you

Eric Chlebek
Software Developer, Sensu
eric@sensu.io (mailto:eric@sensu.io)

http://sensu.io (http://sensu.io)

@EricChlebek (http://twitter.com/EricChlebek)

Creating A Distributed Round Robin Scheduler with Etcd https://lisa19-etcd.herokuapp.com/talk.slide#1

67 of 67 10/29/19, 4:25 PM

