Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Creating A Distributed Round Robin
Scheduler with Etcd

A developer learns some things about distributed systems and
reliability

Eric Chlebek
Software Developer, Sensu

1 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1
About Me
https://github.com/echlebek nups/ginb comvechienel
httpS.//| |Sa 1 9'eth . h ero kua p p. CcO m/ta | k.Sl |d 6#1 (https://lisa19-etcd.herokuapp.com/talk slide#1)

e Works @ Sensu on the Sensu Go monitoring project.

e Experience in HPC, Bioinformatics, Ad-tech, Systems Monitoring.

2 0f 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Introduction

3 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Introduction

4 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Introduction

Sensu

® Sensu is a monitoring framework for heterogeneous systems.

e For the purposes of this talk, Sensu is a scheduler for executing host-based checks on
subscriber nodes.

e Round robin scheduling is one of the key features of Sensu's scheduler.

5 0f 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Introduction

Sensu

e By default, all systems execute their subscribed checks at every scheduling interval.

® Some use cases are better suited a round-robin mode of scheduling (load-balanced
websites, network switches)
e (Classic Sensu relied on RabbitMQ for round-robin scheduling, and Redis for state.

6 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Introduction

E Ra b b |t by Pivotal

e (lassic Sensu uses RabbitMQ as a broker to distribute tasks to clients.
e Single leader responsible for sending tasks to the queue.
e Randomized consumption of tasks by clients.

® |n clustered/HA scenario, failure of the leader could be troublesome.

7 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Introduction

JSON

Classic Sensu Architecture 8

8 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Introduction

Sensu Go Architecture 9

9 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Introduction

e Sensu Go is built around etcd, and does not support RabbitMQ.

¢ | needed to come up with a model for round robin scheduling on etcd.
e | didn't want to follow the single leader pattern.

¢ | wanted round-robin scheduling to be as reliable as the store itself.

e Need to tolerate the loss of either scheduler or worker nodes.

e Would be nice to have a stable ordering of execution for round robin workers. 10

10 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Introduction

etcd

A distributed, reliable key-value store for the most critical data of a distributed system (etcd.io)

e Etcdis a distributed key-value database that uses Raft consensus.
e Written in Go. No Java or C components.

e Cross platform. Works on most Go compilation targets.

e Uses the BoltDB embedded database, optimized for SSDs.

® Uses gRPC as a transport, efficient RPC communication between peers and clients. ,,

11 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Why etcd?

etcd

e Strongly consistent distributed key-value store.

e Benchmarked at tens of thousands of transactions per second.

e Can survive the loss of (n/2) - 1 members.

e MVCC transaction model.

e Can be embedded in Go applications, no need for external dependency.

e Our goal was to enable a straightforward clustering story for Sensu Go. 19

12 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft

13 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft Consensus Algorithm

14

14 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft Consensus Algorithm

e Created by Diego Ongaro and John Ousterhout at Stanford.
e Their goal was to replace Paxos (Leslie Lamport).
e Designed to maximize understandability.

e An algorithm for managing a replicated state machine and log. 1

15 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft Consensus Algorithm

e Why is it called raft?
e Araftis several logs tied together...

e Areplicated log... 16

16 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft Consensus Algorithm

17

17 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft Consensus Algorithm

e Raftis a consensus algorithm that is designed to maximize understandability.
e The algorithm manages a replicated state machine and log.

e Equivalent to Multi-Paxos, in power and efficiency.

e All algorithms of this class require a heartbeat, so raft has one too.

e Timeouts determine if a member is no longer alive. 18

18 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft
What is a log?

e Alogis an append-only data structure.
What is a state machine?

e A state machine is a mathematical model for computation. It takes its input from a log.

How does this apply to raft?

e Each raft member has a state machine that consumes the replicated log. Because the
log is guaranteed to be the same, the state machines will produce the same outputs,,

19 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft

e Raft members are always in one of three states: leader, follower, candidate.
e Elections are used to determine the class of each member.

e |f a follower has not seen a heartbeat for a long time, it establishes itself as a
candidate and initiates an election.

e The result of the election process is that the follower will become the leader, or
another cluster member will become the leader, or a timeout will occur. 20

20 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft
< TNServer = t?h' li
Client ate Machine
= x: 7
Consensus
/ Module v 1
z: ()
Log
x<4 | V1| x=<T7
Replicated state machine architecture 21

21 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft

e Consensus algorithms guarantee safety (even with network delays, partitions, and
packet loss, message duplication, and reordering).

e They are functional, AKA available, as long as a majority of their members are working
and can communicate with one another.

e They do not depend on timing to ensure consistency in their logs. Bad clocks can
cause availability problems at worst. 99

22 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft

e Raft has become more popular than Paxos, as it is easier to understand, and
implement.

® Few people succeed in understanding Paxos, and it requires great effort to do so.

e Even seasoned researchers struggle at understanding Paxos.

23

23 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft

e Raft implements consensus by electing a leader, and making that leader responsible
for managing the replicated log.

e The leader accepts log entries from clients, replicates them to followers, and tells
them when it is safe to apply the logs to their state machines.

e Because the leader has the sole responsibility for managing the replicated log, it is free
to append to the log in any way it likes. 24

24 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft

e Raft clusters are available as long as a majority of the members are working.
e All raft cluster sizes are odd numbers. (1, 3,5, 7, 9)

e |f 4 machines are members of a raft cluster, the cluster size is at least 5. 55

25 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft

e \When more than (N/2 - 1) raft members fail, the cluster becomes unavailable.
® |n a net split, the minority partition will not be available.

e This is essential to guarantee raft's correctness property. 2%

26 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft

e The raft algorithm describes an infinitely growing log.

¢ |nfinitely growing logs don't work so well in practice...

Forever ever?

achurchinthewild i 27

27 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft

e Any useful implementation of raft requires some sort of log compaction.
e Many raft and paxos systems use snapshotting to deal with log compaction.
e Snapshotting can be implemented in various ways.

e After a snapshot, the log history to a certain point is compacted into a single entry.

4

[unintelligible cheerlng sounds]

28

28 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Raft Key Takeaways

e Correctly implemented, a store built on raft will always be consistent.
e |f more than half of a raft cluster fails, the service becomes unavailable.
e |f a raft cluster is split in two, the smaller half becomes unavailable, while the larger

half remains available, as long as it has a sufficient number of nodes. 25

29 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Back to etcd

30 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

etcd API
What does the etcd API offer?

e Key-value storage (range, put, delete)
e Multi-version concurrency control

® Transactions (single round trip)

® | eases

e \Watchers 31

31 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

KV Storage

32

32 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

KV Storage

33

33 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

MVCC

34

34 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Transactions

e etcd's transactions are a single round-trip
e that means you can't read back a value, and then operate on it, transactionally

® but you can execute comparisons server-side 36

35 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Transactions

func main() {
ctx := context.Background()

client := newClient()
defer client.Close()

if _, err := client.Put(ctx, "foo", "bar"); err != nil {
log.Fatal(err)

}
_, err := client.Txn(ctx).If(
etcd.Compare(etcd.Value("foo"), "=", "bar"),
). Then(
etcd.OpPut("frob", "true"),
).Else(
etcd.OpPut("frob", "false"),
).Commit()

if err != nil {
log.Fatal(err)
}

resp, err := client.Get(ctx, "frob")
if err != nil {
log.Fatal(err)

¥
36

36 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

fmt.Println(string(resp.Kvs[0].Value))

37 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Leases

37

38 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Swiss Alps

38

39 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Leases (Keepalives)

39

40 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Leases (Keepalives)

¢ When combined with keepalives, leases offer a powerful primitive for creating etcd
database triggers.

® |n Sensu, leases are used for implementing vigilance control. When agents haven't
been heard from for a long enough period, a leased key expires, which alerts the
backend to the presence of failure.

® | eased keys can be combined with watchers for some interesting control flow
constructs. 40

41 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Watchers

41

42 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Leases and Watchers Together

42

43 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Leases and Watchers Together

43

44 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Mt. Baker

45 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Lease and Watchers Together

e Allows creating a distributed trigger

e Semi-durable; can survive cluster downtime, but watch events are dropped if nobody
is watching

e Forms the basis of a round-robin ring 45

46 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Round-robin ring

e Around-robin ring is a circular list of workers.
e The ring tracks which worker is the next to receive work.

e On a configurable interval, the workers travel around the ring, waiting for their turn to
work.

e Unlike a token ring, the workers are not responsible for passing tokens to keep the

ring mechanism working, 46

47 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Round-robin ring

e The round-robin ring is operated by one or more schedulers.
e Any scheduler can add or remove workers from the ring.

e The schedulers compete to advance the ring to the next position. (first write wins,
lock-free)

e When a worker's turn to work comes up, every scheduler is notified. (watcher) 47

48 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Round-robin ring

e Workers in the ring are leased; if not kept alive, they will expire.

e This prevents the ring from containing workers that have failed. (eventually)
® Ring is lexicographically ordered, like etcd keys.

e The next worker to work is stored under a "next" key.

e |f the schedulers notice that a worker has expired, and would have been the next to

work, they compete to advance the ring. 48

49 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Round-robin ring

e Schedulers can fail, need at least one to keep scheduling working,.
e |f all schedulers fail, ring state is maintained.
e etcd servers can fail, ring will keep working as long as a majority are healthy.

e |f etcd loses availability, ring state is maintained until restart. 49

50 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd

51 of 67

Round-robin ring

https://lisal9-etcd.herokuapp.com/talk.slide#1

workers
wl|w2|w3|wéd|ws|wb
A
I
/
/
//
w2 €—————1———10s

next worker
(head)

lease

50

10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd

52 of 67

Round-robin ring

https://lisal9-etcd.herokuapp.com/talk.slide#1

workers
wl|w2|w3|wéd|ws|wb
A
]
/
/
—————+—— (s
next woyker
(head) lease

51

10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Round-robin ring

workers

wl|w2|w3|wéd|ws|wb

getw2+ '\OQ' \ o

S2

next worker
(head)

SI3[NPaYDs

S3

52

53 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Round-robin ring

workers

wl|w2|w3|wéd|ws|wb

lease grant 10s

sl

S2

next worker
(head)

SI3[NPaYDs

S3

53

54 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Round-robin ring

workers

wl|w2|w3|wéd|ws|wb

put

w3 < 52

next worker [T~ 3
(head)

SI9[NPaYDSs

54

55 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Round-robin ring

workers

wl|w2|w3|wéd|ws|wb

sl

put

W3\%V . S2

next worker [~T~_ 3
(head)

SI9[NPaYDSs

55

56 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Round-robin ring

workers

wl|w2|w3|wéd|ws|wb

lease revoke§

next worker
(head)

~——_

sl %
put \ 3
[
W3 s2 =

D

i

0

S3

56

57 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd

58 of 67

Round-robin ring

https://lisal9-etcd.herokuapp.com/talk.slide#1

workers
wl|w2|w3|wd|wS|wb
A
/
/
—--’/
//
/
V4
w3

next worker
(head)

57

10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Testing

e Difficult to unit-test this library, eventually gave up.
e etcd interfaces are not easy to mock out.
e Created integration tests that run reasonably quickly.

e Easy to set up multiple etcd instances in a single Go process. -

59 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Testing

e Early versions of the ring were not very successful!

e The first version lacked synchronization between the schedulers, and had unsolvable
concurrency bugs.

e Moving the trigger mechanism into etcd, using leases, solved the synchronization

problem. co

60 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Testing

e etcd failures.
e Scheduler failures.
e \Worker failures.

e Any combination of the above. 60

61 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

What have | learned?

e The feature-set of etcd is quite interesting, and has some surprisingly powerful
primitives.

e Testing complex data structures, and coordination routines, remains tricky. | am still
learning how to best approach this.

® |ease expirations are remarkably un-performant. (Linear scan of all leases for every

expiration, solved in etcd 3.4) 61

62 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

"Why didn't you use a regular database?"

e |t's complicated.

e | would always rather use Postgres. It's awesome, and has a richer model for
transactions.

® Sometimes working within particular constraints can result in an interesting outcomg,

63 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

"Why didn't you use the single-leader pattern, but with etcd?"

e | was fearful of handling leader failure correctly.

e | believed that etcd provided the primitives for building a distributed, coordinated data
structure.

e | perceived the single-leader pattern to be less reliable.

e |t seemed more fun to do it this way. 63

64 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

"Does it scale?"

e | think so... more testing needed is needed here.

e etcd watchers can scale surprisingly high with gRPC proxy - 1M watch events per
second with 20 proxies.

e etcd should be able to service hundreds of scheduler nodes, maybe even thousands.

e Asingle scheduler should be able to handle thousands or tens of thousands of
workers. 64

65 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd https://lisal9-etcd.herokuapp.com/talk.slide#1

Open-source implementation
Sensu's round-robin ring is available as a Go library under an MIT license.

https.//godoc.org/github.com/sensu/sensu-go/backend/ringv2 wpsseodocorggthubcomvsensusensu

go/backend/ringv2) 65

66 of 67 10/29/19, 4:25 PM

Creating A Distributed Round Robin Scheduler with Etcd

67 of 67

Thank you

Eric Chlebek
Software Developer, Sensu
eric@sensu.io maitoericasensuio)

http //Se NSu. | (0] (http://sensu.io)
@ E I’i CC h | e be k (http://twitter.com/EricChlebek)

https://lisal9-etcd.herokuapp.com/talk.slide#1

10/29/19, 4:25 PM

