
Token UpToken Up
Keeping Hands out of theKeeping Hands out of the

Cookie JarCookie Jar
Erin BrowningErin Browning

1

Slides are available at:

https://www.frowning.wtf/token-up

2

https://www.frowning.wtf/token-up

$whoami$whoami

3 . 1

Erin Browning

Senior Security Engineer

a.k.a., I'm a hacker

3 . 2

You can contact me at:

erin@frowning.wtf

@efrowning

3 . 3

mailto:erin@frowning.wtf
https://www.twitter.com/efrowning

3 . 4

3 . 5

Slack is hiring!Slack is hiring!
Slack is used by millions of people every day – we need
engineers who want to make that experience as secure

and enjoyable as possible.

slack.com/jobs

3 . 6

http://localhost:8000/slack.com/jobs

All of the code-blocked frowning.wtf URLs are
fake.

Please don't attack my website.

4

5

The ProblemThe Problem

6 . 1

I'm an attacker.

I want to take over accounts on your website.

6 . 2

Your site probably looks like this:

API: www.frowning.wtf/api

Frontend client: www.frowning.wtf

Mobile clients

6 . 3

Your sessions probably look like one or more of these:

JWTs
Randomized session token
API tokens

6 . 4

As you break your website out from a monolith to
microservices, how do you store sessions/tokens
between an API and your browser-based frontend

client?

6 . 5

Auth0's answer:

6 . 6

Is storing your auth in local storage that bad?

Let's find out.

6 . 7

In this talk:In this talk:
Common vulnerabilities that execute in a browser
Modern application structures
How to take advantage of browser-based
protections

7 . 1

1UP1UP

7 . 2

Two common attacks

8 . 1

8 . 2

What is XSS?

Cross site scripting

8 . 3

Attacker created javascript is executed in the user's
browser in the context of site the user visited

More at: owasp.org/index.php/Cross-site_Scripting_(XSS)

8 . 4

http://localhost:8000/owasp.org/index.php/Cross-site_Scripting_(XSS)

How?

Injection!

8 . 5

Cannonical testing example:
<script>alert(1);</script>

8 . 6

What can you do with XSS?

Steal cookies
Take actions as the user
Like changing passwords
Change page content

8 . 7

8 . 8

What is CSRF?

Cross-Site Request Forgery
More at: owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

8 . 9

https://www.owasp.org/index.php/Cross-Site_Request_Forgery_(CSRF)

Forces a user to perform actions they didn't intend on
a website to which they're authenticated

8 . 10

How?

By default, cookies are included in requests sent cross
domain.

8 . 11

8 . 12

8 . 13

What do these attacks have in common?

8 . 14

All of these attacks execute in the user's browser

8 . 15

How are these attacks different?

8 . 16

XSS > CSRF

8 . 17

8 . 18

How can we reduce the impact of these attacks?

9 . 1

9 . 2

First, let's talk about a typical application structure:
www.frowning.wtf - contains your frontend +
any monolith code
www.frowning.wtf/api - api
www.frowning.wtf/admin - administrator site

10 . 1

10 . 2

Where is your authentication stored in the browser?

10 . 3

Probably in a cookie

That cookie is probably scoped to *.frowning.wtf

If not, it'll be in local storage, placed there by your
javascript

10 . 4

Interactions are going through XHR to /api
For those of you who don't do frontend work:

XHR is an API called XMLHttpRequest.
It lets you transfer data between a web browser running JS

and a server without reloading the page.

10 . 5

Traditional CSRF protection stores a random token in a
form in an HTML page.

That token gets stored on the server as well.

When the form is submitted, the token is sent with the
form data and validated on the server.

10 . 6

Your API may be using a CSRF token, or it may just be
relying on monolith form CSRF protection--aka, your

api may be vulnerable.

10 . 7

Improvement: use subdomains

11 . 1

Now you have:

api.frowning.wtf
www.frowning.wtf
admin.frowning.wtf

11 . 2

You can scope cookies to www, admin and api instead
of using *.

The API cookie can have the secure and HTTPonly flags
set.

Secure means that cookie will only be sent over HTTPS

HTTPonly means js can't touch it

Yes, the names are confusing, so remember: for HTTPonly, only HTTP requests can access
the cookie.

11 . 3

You XHR your requests to api from www.

11 . 4

How do you even do CSRF protection to your API?

11 . 5

Depends on ~content types~

multipart/form-data
text/plain
application/x-www-url-form-encoded
application/json
application/xml

11 . 6

multipart/form-data, can go cross origin
text/plain, can go cross origin
application/x-www-url-form-encoded,
can go cross origin
application/json, can't go cross origin without
CORS
application/xml, can't go cross origin without
CORS

11 . 7

What is CORS?

11 . 8

We care about CORS because of the protection offered
by the Same Origin Policy (SOP).

11 . 9

What is the Same Origin Policy?

Lots of requests can't be made from URL1 to URL2 if
they differ on the following things:

Protocol (e.g., HTTP vs HTTPS)
Port
Host

11 . 10

CORS must be set on the assets you are accessing.

11 . 11

How do you reduce the impact of XSS?

API isn't running js.

www could still be vulnerable, and the site could send
requests through XHR.

11 . 12

Improvement: use iFrames

12 . 1

Instead of using CORS, create an iFrame on www to
api.

Use the window.postMessage API
docs at developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

12 . 2

https://developer.mozilla.org/en-US/docs/Web/API/Window/postMessage

window.postMessage() enables cross-origin
communication through DOM-based

Windows can send and receive messages from each
other through events.

events.

12 . 3

https://developer.mozilla.org/en-US/docs/Web/API/EventTarget

12 . 4

ALWAYS ALWAYS ALWAYS validate your origin

if (event.origin !== www.frowning.wtf)
return;

// .. otherwise do some stuff

12 . 5

Improvement: use websockets

13 . 1

Verify your Origin header.

13 . 2

The attacker would need to fake the origin header in
the victim's browser.

Modern browsers don't let you set your own origin
header.

13 . 3

Common problems:

Sites don't check auth before upgrading the
connection. The protocol upgrade request will have
access to the browser's cookies. Therefore, check
auth when upgrading.

13 . 4

Similarities

iFrames and websockets both have trustworthy origins
in the browser.

14 . 1

Ultimately, how can you avoid CSRF hitting your API?

By dropping all requests to API that aren't
application/json

14 . 2

How can you avoid XSS?

You can't completely.

14 . 3

Should you store auth in local storage?

Not unless you're sure you can prevent XSS.

14 . 4

How do you know you have a good understanding of
all this?

Tell me why XSS is worse in all these cases.

14 . 5

Special ThanksSpecial Thanks
lvh @latacora

Leigh Honeywell @tallpoppy

The latacora team

The Product Security teams @Slack

15 . 1

see you on the internet bb

16

