
Datastore Axes
Choosing your scalability direction

Nicolai Plum

Genesis - Autonomy
● Congratulations, Developers: you have

autonomy to design and build your own
product.

● Developers must tell Database Engineering
● How their product data will grow
● How its database needs will change

Genesis - Developers
● Help, I have responsibility for build my own

product successfully!
●  I don’t know what I need!
●  I can’t predict the future!

3

Genesis - Database Engineering
● Our database services should be a

well-defined product
● Clearly defined capabilities
● … and compromises

4

Datastore
● A system which stores and retrieves data
● Small data (in this talk), maybe very numerous
● Reliable and Durable
● Can have multiple components

● Data servers, routers/proxies, Orchestration, etc

5

Small systems
● Everything is fine
● New products don’t have performance and

scalability issues
● No need for compromises
● 70 years of previous computer industry

development solves the problems for you
6

Large systems
●  Nothing is fine
●  Performance problems
●  Scalability problems, always
●  Technology-driven design compromises are

necessary
●  Established products are large systems and have

issues
● … and users, and revenue impact

7

Relating to the real world (business)
●  Product users come from the real world
●  Ask the developers, product managers, scientists…
●  Ask the accountants
●  “Financial Planning”, “Management Accounting”

●  Do your own business / industry research
●  Yes, it’s a layering violation, but it will save you

●  Keep up your contacts – don’t be isolated
●  Look for fundamental controlling parameters

8

Relating to the real world (tech)
●  Technology also comes from the real world too
… outside your control.

●  Technology capabilities:
●  Hardware metrics and performance

● … many other good talks at this conference
●  Benchmarks, testing, learning from others, use

knowledge and experience
●  Look for fundamental controlling parameters

9

Capacity and load

10

Capacity and load trouble

11

CPU? But what about…
● Network
● 10Gbit and more, limited by CPU

(and Latency)

● Storage
● SSD and NAS, limited by CPU

(and Latency)

12

Fundamentals
● Fundamental controlling parameters
● Don’t change often
● Still have to be checked
● Can be elusive

● Don’t be misled by second-order consequences

● Find the Constraints on scalability

13

All of us in this together
●  Datastore and application scalability problems are

connected
●  Core Infrastructure teams have more experience
●  Sometimes also more knowledge
●  Yet we must educate developers
● … and delegate to them
●  In the end, we all get paid from the same

enterprise revenues!

14

Axes of Datastore scalability

16

Data size
More…
●  Rows
●  Tables

●  Sharding
●  Data partitioning

17

Data size
More…
●  Rows
●  Tables

●  Sharding
●  Data partitioning

Caused by
●  Business volume growth
●  Analytics
●  Logging
●  Data retention

18

Data size
More…
●  Rows
●  Tables

●  Sharding
●  Data partitioning

Effects
●  Non-indexed queries are

impossible – less ad-hoc
reporting

●  Split tables for partitioning
●  Harder to query
●  Client-side joins

●  Less CPU per unit data

19

20

Schema growth
More of
●  Columns
●  Tables
●  Relations & references
●  Data model complexity
●  Query complexity

●  Joins
●  Foreign Key constraints

21

Schema growth
More of
●  Columns
●  Tables
●  Relations & references
●  Data model complexity
●  Query complexity

●  Joins
●  Foreign Key constraints

22

Schema growth
More of
●  Columns
●  Tables
●  Relations & references
●  Data model complexity
●  Query complexity

●  Joins
●  Foreign Key constraints

Caused by
●  More customers,

products
●  Product complexity
●  Analytics
●  Developers

…Frameworks, ORMs
…Abstraction layers

23

Schema growth
More of
●  Columns
●  Tables
●  Relations & references
●  Data model complexity
●  Query complexity

●  Joins
●  Foreign Key constraints

Effects
●  Query optimiser stress

●  Queries go bad, need
tuning

●  Indexing overhead
●  Time and space

●  FKs slow inserts
●  More queries per end-

user action
24

25

Read query rate
More…
●  Queries

…on more rows

●  More rows retrieved
… from disc (or SSD)

●  More data to sort and
send

26

Read query rate
More…
●  Queries

…on more rows

●  More rows retrieved
… from disc (or SSD)

●  More data to sort and
send

Caused by
●  Business growth
●  Customer behaviour

changes
●  New features, interactivity,

richer website
●  Read growth disconnected

from revenue

27

Read query rate
More…
●  Queries

…on more rows

●  More rows retrieved
… from disc (or SSD)

●  More data to sort and
send

Effects
●  Server CPU, IOPS

increase
●  Memory cache strain
●  Network traffic increase
●  Need more read scale-out

●  Replicas
●  Copy number

28

29

Write query rate
More…
●  Transactions
●  Logging, audit
●  Analytics
●  ETL & Data Pumps

30

Write query rate
More…
●  Transactions
●  Logging, audit
●  Analytics
●  ETL & Data Pumps

Caused by
●  Business growth
●  Curiosity, Security,

Regulation
●  Richer customer

experience
●  Saved preferences
●  Breadcrumbs

31

Write query rate
More…
●  Transactions
●  Logging, audit
●  Analytics
●  ETL & Data Pumps

Effects
●  Server IOPS, CPU
●  Latency increase
●  Contention, locking
●  Replication stress

32

Examples

33

Notation

34

Application coding
●  Client-side join and filter, divide effort client- and

server-side
●  Use an efficient data model

●  Vectorise queries, do not iterate on Database
●  Multithreaded, Asynchronous
●  Parallelise (if you have to)
● Map / reduce in your app

●  Fast client code

35

Simplified query support
●  Don’t support complex joins
●  Don’t support use of known datastore weaknesses
●  No Foreign Key constraints
●  Enforce good indexing

●  Covering secondary indexes
●  Discourage pointless server load

●  ORDER BY without LIMIT!
●  Intensive server side aggregate functions
●  Prefer client-side code over server-side code

●  Compromise with developers

36

Caching
● Much faster data access…
●  Most of the time
●  On a good day

● Bad things hide in averages
Maybe that’s OK for you

37

38

90% Cache
Hit Rate

Compression
●  Storage
●  Application (JSON, text, blobs; Sereal)
●  Database (InnoDB Page)
●  Disc array (storage controller compression)

●  Network – MySQL protocol compression
●  Usually huge win, but network usually OK

●  Helps: Data size, Read query (a bit)
●  Hinders: Updates, CPU/Latency

39

Replication
●  More copies of data

●  MySQL – many servers each with all data, read only
●  Clusters – more nodes in cluster
●  Increased copy number

●  More effort replicating data
●  Writes: Neutral at best, bad at worst
●  Especially in clusters

●  May need separate read and
write queries
●  You should have that anyway

40

Replication

41

Cluster databases (Galera, Cassandra,
MySQL Group Replication)

42

MySQL Cluster database

43

Cluster databases
●  MySQL Cluster

●  Huge read & write rate
●  Very reliable
●  Restricted data size
●  No complex schema
●  No complex queries

●  Cassandra
●  High read rate
●  Reliable
●  Huge data size
●  (almost) No schema
●  Very simple queries

44

Split schemas

45

Split Schemas
●  (SLO) Declare maximum schema size
● Move some tables out to a new schema
● Preserve locality of reference

● Much work for developers

46

Shard data

47

Shard data
●  Multiple data servers with data distributed between

them
●  Application complexity == developer work
●  Some queries much slower than others
●  Auto-sharders – Vitess, Spider

●  Limited query subset
●  Much greater operations complexity
●  Easier on developers!

●  Compromise with developers

48

Example: Core transaction data

49

●  Requires

Example: Core transaction data

50

●  Requires ●  Solutions?
●  Split data
●  Auto-sharder

(Vitess?)
●  Cluster

(MySQL?)

?
nicolai.plum@booking.com

