

Datastore Axes Choosing your scalability direction

Nicolai Plum

Genesis - Autonomy

- Congratulations, Developers: you have autonomy to design and build your own product.
- Developers must tell Database Engineering
 - How their product data will grow
 - How its database needs will change

Genesis - Developers

- Help, I have responsibility for build my own product successfully!
- I don't know what I need!
- I can't predict the future!

Genesis - Database Engineering

- Our database services should be a well-defined product
- Clearly defined capabilities
- ... and compromises

Datastore

- A system which stores and retrieves data
 - Small data (in this talk), maybe very numerous
 - Reliable and Durable
 - Can have multiple components
 - Data servers, routers/proxies, Orchestration, etc

Small systems

- Everything is fine
- New products don't have performance and scalability issues
- No need for compromises
- 70 years of previous computer industry development solves the problems for you

Large systems

- Nothing is fine
- Performance problems
- Scalability problems, always
- Technology-driven design compromises are necessary
- Established products are large systems and have issues
 - ... and users, and revenue impact

Relating to the real world (business)

- Product users come from the real world
- Ask the developers, product managers, scientists...
- Ask the accountants
 - "Financial Planning", "Management Accounting"
- Do your own business / industry research
 - Yes, it's a layering violation, but it will save you
- Keep up your contacts don't be isolated
- Look for fundamental controlling parameters

Relating to the real world (tech)

- Technology also comes from the real world too ... outside your control.
- Technology capabilities:
 - Hardware metrics and performance
 - ... many other good talks at this conference
 - Benchmarks, testing, learning from others, use knowledge and experience
- Look for fundamental controlling parameters

Capacity and load

Capacity and load trouble

CPU? But what about...

- Network
 - 10Gbit and more, limited by CPU (and Latency)
- Storage
 - SSD and NAS, limited by CPU (and Latency)

Fundamentals

- Fundamental controlling parameters
 - Don't change often
 - Still have to be checked
 - Can be elusive
 - Don't be misled by second-order consequences
- Find the Constraints on scalability

All of us in this together

- Datastore and application scalability problems are connected
- Core Infrastructure teams have more experience
- Sometimes also more knowledge
- Yet we must educate developers
- ... and delegate to them
- In the end, we all get paid from the same enterprise revenues!

Axes of Datastore scalability

Data size

More...

- Rows
- Tables
 - Sharding
 - Data partitioning

Data size

More...

- Rows
- Tables
 - Sharding
 - Data partitioning

Caused by

- Business volume growth
- Analytics
- Logging
- Data retention

Data size

More...

- Rows
- Tables
 - Sharding
 - Data partitioning

Effects

- Non-indexed queries are impossible – less ad-hoc reporting
- Split tables for partitioning
 - Harder to query
 - Client-side joins
- Less CPU per unit data

More of

- Columns
- Tables
- Relations & references
- Data model complexity
- Query complexity
 - Joins
 - Foreign Key constraints

Table One	Table Two
id	id
field	field
field	field
field	field
Table Three	Table Four
id	id
field	field
field	field
field	field
Table Five	Table Six
id	id
field	field
field	field
field	field
Table Seven	Table Eight
id	id
field	field
field	field
field	field

More of

- Columns
- Tables
- Relations & references
- Data model complexity
- Query complexity
 - Joins
 - Foreign Key constraints

More of

- Columns
- Tables
- Relations & references
- Data model complexity
- Query complexity
 - Joins
 - Foreign Key constraints

Caused by

- More customers, products
- Product complexity
- Analytics
- Developers
 - ...Frameworks, ORMs
 - ...Abstraction layers

More of

- Columns
- Tables
- Relations & references
- Data model complexity
- Query complexity
 - Joins
 - Foreign Key constraints

Effects

- Query optimiser stress
 - Queries go bad, need tuning
- Indexing overhead
 - Time and space
- FKs slow inserts
- More queries per enduser action

Read query rate

More...

• Queries

...on more rows

- More rows retrieved ... from disc (or SSD)
- More data to sort and send

Read query rate

More...

• Queries

...on more rows

- More rows retrieved ... from disc (or SSD)
- More data to sort and send

Caused by

- Business growth
- Customer behaviour changes
- New features, interactivity, richer website
- Read growth disconnected from revenue

Read query rate

More...

• Queries

...on more rows

- More rows retrieved ... from disc (or SSD)
- More data to sort and send

Effects

- Server CPU, IOPS increase
- Memory cache strain
- Network traffic increase
- Need more read scale-out
 - Replicas
 - Copy number

Write Queries

Write query rate

More...

- Transactions
- Logging, audit
- Analytics
- ETL & Data Pumps

Write query rate

More...

- Transactions
- Logging, audit
- Analytics
- ETL & Data Pumps

Caused by

- Business growth
- Curiosity, Security, Regulation
- Richer customer
 experience
 - Saved preferences
 - Breadcrumbs

Write query rate

More...

- Transactions
- Logging, audit
- Analytics
- ETL & Data Pumps

Effects

- Server IOPS, CPU
- Latency increase
- Contention, locking
- Replication stress

Notation

Application coding

- Client-side join and filter, divide effort client- and server-side
 - Use an efficient data model
- Vectorise queries, do not iterate on Database
- Multithreaded, Asynchronous
- Parallelise (if you have to)
 - Map / reduce in your app
- Fast client code

Simplified query support

- Don't support complex joins
- Don't support use of known datastore weaknesses
- No Foreign Key constraints
- Enforce good indexing
 - Covering secondary indexes
- Discourage pointless server load
 - ORDER BY without LIMIT!
 - Intensive server side aggregate functions
 - Prefer client-side code over server-side code
- Compromise with developers

Caching

- Much faster data access...
 - Most of the time
 - On a good day
- Bad things hide in averages Maybe that's OK for you

Compression

- Storage
 - Application (JSON, text, blobs; Sereal)
 - Database (InnoDB Page)
 - Disc array (storage controller compression)
- Network MySQL protocol compression
 - Usually huge win, but network usually OK
- Helps: Data size, Read query (a bit)
- Hinders: Updates, CPU/Latency

Replication

- More copies of data
 - MySQL many servers each with all data, read only
 - Clusters more nodes in cluster
 - Increased copy number
- More effort replicating data
 - Writes: Neutral at best, bad at worst
 - Especially in clusters
- May need separate read and write queries
 - You should have that anyway

Replication

Cluster databases (Galera, Cassandra, MySQL Group Replication)

MySQL Cluster database

Cluster databases

ΔΔ

MySQL Cluster

- Huge read & write rate
- Very reliable
- Restricted data size
- No complex schema
- No complex queries Schema growth

- Cassandra
 - High read rate
 - Reliable
 - Huge data size
 - (almost) No schema
 - Very simple queries

Split schemas

Split Schemas

- (SLO) Declare maximum schema size
- Move some tables out to a new schema
 - Preserve locality of reference
- Much work for developers

Shard data

Shard data

- Multiple data servers with data distributed between them
- Application complexity == developer work
- Some queries much slower than others
- Auto-sharders Vitess, Spider
 - Limited query subset
 - Much greater operations complexity
 - Easier on developers!
- Compromise with developers

Example: Core transaction data

Requires

Example: Core transaction data

50

Requires

- Solutions?
- Split data
- Auto-sharder (Vitess?)
- Cluster (MySQL?)

nicolai.plum@booking.com