
Have you tried turning
it off and turning it on
again?

 Tanya Reilly
 (@whereistanya)

Where are you in
the stack?

CMS

MY SKILLZ
RESUME

Where are you in
the stack?

MY SKILLZ
RESUME

CMS

Where are you in
the stack?

MY SKILLZ
RESUME

CMS

CMS ???

Where are you in
the stack?

CMS!!

CMS ???

MY SKILLZ
RESUME

What is it?

Abstractions
let us

specialise

A slidedoc is a visual document, developed in presentation software,
that is intended to be read and referenced instead of projected.

9

● fallback plans
● dependencies
● what can we do?

Fallback plans

12

backups

Of course! I
copied it to

/tmp/
database.bak

Backup_Backup_Backup_-_And_Test_Restores, T-Town Photo Booth CC BY 2.0Backup, Backup Backup and Test Restores, T-Town Photo Booth CC BY 2.0

If you haven't
tested your
backups, you
don't have
backups.

the
identical(ish!)
failover site

Take two,
they’re
small

1. Is it real?

2. Is it up to date?

Retro, Melinda Seckington CC BY 2.0

3. Is the idea of actually using it kind of terrifying?

FreeImages.com/barun patro

Two sites?
I’ve

forgotten
how to

count that
low

replicated
everything

● fallback plans
● dependencies
● what can we do?

(Micro)services

(Micro)services

Jenga Tower of 50 blocks, Johannes Bader CC BY 2.0

Everybody's
backend is

someone else's
frontend

“
 "A service cannot be more available
than the intersection of all its critical

dependencies."

-- "The Calculus of Service Availability"
Ben Treynor, Mike Dahlin, Vivek Rau, Betsy Beyer

Your stack…
is really

more of a
"pile", isn't

it?

dependency
cycles

uh...

control
plane cycles

ŠJů CC BY 4.0

27

Why would
we ever

restart it?

machines
that run

forever (until
they don't)

28

root@X1:/# halt
Connection to x1 closed by
remote host.

root@x3:/# halt
Connection to x3 closed by
remote host.
$

root@x2:/# halt
Connection to x2 closed by
remote host.

root@x10000:/# halt
Connection to x10000 closed
 by remote host
$

Global simultaneous reboot (doesn’t usually look like this)

root@x10001:/# halt
Connection to x10001 closed by
remote host.
$

tick tick tick...

tick tick tick...

tick tick tick...

tick tick tick...

tick tick tick...

tick tick tick...

tick tick tick...

tick tick tick...

tick tick tick...

tick tick tick...

● fallback plans
● dependencies
● what can we do?

dependency
discovery

We're built
on top of...
really? Are
you sure?

It’s Turtles All The Way Down, William Warby. CC BY 2.0

Original design. "We keep an in-memory index of the available cats with some
metadata about them. The cat chooser uses the information from the user's request
to determine the attributes that needs to be fulfilled. It checks the index for cats
that match those attributes. It pulls those cats from storage and returns one to the
user.

Indexers run at startup and at intervals to update the metadata and make sure we
have accurate cat sentiment analysis and geolocation data."

design docs obscure information

Original design. "We keep an in-memory index of the available cats with some
metadata about them. The cat chooser uses the information from the user's request
to determine the attributes that needs to be fulfilled. It checks the index for cats
that match those attributes. It pulls those cats from storage and returns one to the
user.

Indexers run at startup and at intervals to update the metadata and make sure we
have accurate cat sentiment analysis and geolocation data."

User story: cat must be a cat. "Since catness analysis is an expensive operation,
we only run the catness analyzer on pictures that have a high likelihood of being
served, i.e., those aleady indexed with geolocation and sentiment data. We'll take
the index from the cat chooser and run catness analysis over the cats from that
queue."

design docs obscure information

 webserver -> cat_chooser

 cat_chooser -> cat_geotagger

 cat_chooser -> cat_sentiment_analyzer

 cat_chooser -> catness_analyzer

 cat_chooser -> storage

 catness_analyzer -> cat_chooser

 catness_analyzer -> storage

 cat_geotagger -> storage

 cat_sentiment_analyzer -> storage

lists are better

digraph {

 webserver -> cat_chooser

 cat_chooser -> cat_geotagger

 cat_chooser -> cat_sentiment_analyzer

 cat_chooser -> catness_analyzer

 cat_chooser -> storage

 catness_analyzer -> cat_chooser

 catness_analyzer -> storage

 cat_geotagger -> storage

 cat_sentiment_analyzer -> storage

}

pictures are even better

digraph {

 webserver -> cat_chooser

 cat_chooser -> cat_geotagger

 cat_chooser -> cat_sentiment_analyzer

 cat_chooser -> catness_analyzer

 cat_chooser -> storage

 catness_analyzer -> cat_chooser

 catness_analyzer -> storage

 cat_geotagger -> storage

 cat_sentiment_analyzer -> storage

}

pictures are even better $ /usr/bin/dot -T png -o cats.png cats.dot

But don't put humans in charge of
remembering what connects to what

dependency
policies

This is Site
Reliability.
THERE ARE

RULES.

Are you on
the guest

list?

policy
enforcement

policy
enforcement

Are you on
the guest

list?

kind: NetworkPolicy
apiVersion: networking.k8s.io/v1
metadata:
 name: access-nginx
spec:
 podSelector:
 matchLabels:
 run: nginx
 ingress:
 - from:
 - podSelector:
 matchLabels:
 access: "true"

Manage your
dependencies early

 (It’s harder later on)
Some sock yarn, Kara, CC BY-ND 2.0

architecting
in layers

Look, an
actual
stack!

soft dependencies

The appearance of U.S. Department of Defense (DoD) visual information does
not imply or constitute DoD endorsement.

The reserve
parachute
is always
packed by
an expert

reliable
fallback
plans

54

testing

Really, try
turning it
off and

turning it on
again

in conclusion...

❏ small fallback
plans

❏ test everything
❏ manage

dependencies
❏ architect in

layers

fallback plans:

small, simple, solid

if it's not tested, assume
it doesn't work

❏ small fallback
plans

❏ test everything
❏ manage

dependencies
❏ architect in

layers

if it's not tested,
assume it doesn't work

manage your
dependencies
before you
need to

❏ small fallback
plans

❏ test everything
❏ manage

dependencies
❏ architect in

layers

❏ small fallback
plans

❏ test everything
❏ manage

dependencies
❏ architect in

layers dependencies
go down
the stack

hope is not a strategy

@whereistanya
https://github.com/whereistanya/graphviz/ Presentation template by

slidescarnival.com

