

© Electric Cloud | electric-cloud.com | @electriccloud

Anders Wallgren
CTO, Electric Cloud
@anders_wallgren

Avan Mathur Product
Manager, Electric Cloud

@Avantika_ec

Continuous Delivery of Microservices:
Patterns and Processes

© Electric Cloud | electric-cloud.com | @electriccloud

What are Microservices?

• A pattern for building distributed systems:
• A suite of services, each running in its own process, each

exposing an API
• Independently developed
• Independently deployable
• Each service is focused on doing one thing well

“Gather together those things that change for the same reason, and

separate those things that change for different reasons.”
– Robert Martin

© Electric Cloud | electric-cloud.com | @electriccloud

What’s cool about Microservices?

• Divide and conquer complex distributed applications
• Loose coupling, so each service can:

• choose the tooling that’s appropriate for the problem it solves
• can be scaled as appropriate, independent of other services
• can have its own lifecycle independent of other services

• Makes it easier to adopt new technologies
• Smaller more autonomous teams are more productive
• Better resource utilization

© Electric Cloud | electric-cloud.com | @electriccloud

Isn’t this just SOA warmed over?

• SOA was also meant to solve the monolithic problem
• No consensus evolved on how to do SOA well (or even what

SOA is)
• Became more about selling middleware than solving the

problem
• Tends to mandate technology stacks
• Doesn’t address how to break down monoliths beyond “use

my product to do it”

Microservices evolved out of real world problem solving

© Electric Cloud | electric-cloud.com | @electriccloud

Can’t I just modularize and use shared libraries?

• Technological coupling
• No longer free to use the tools that are fit for purpose
• Generally not able to deploy a new version without

deploying everything else as well
• Makes it much easier to introduce API coupling – process

boundaries enforce good API hygiene

Code reuse is a good thing, but it’s not the
best basis for a distributed architecture

© Electric Cloud | electric-cloud.com | @electriccloud

What’s good/bad about monolithic apps?

• Can be easier to test
• Can be easier to develop
• Can be easier to deploy

• Can’t deploy anything until
you deploy everything

• Harder to learn and
understand the code

• Easier to produce spaghetti
code

• Hard to adopt new
technologies

• You have to scale
everything to scale
anything

© Electric Cloud | electric-cloud.com | @electriccloud

So…Was Fred Brooks Wrong?

Emphatically, no

But!

A properly constructed
microservices architecture
makes it vastly easier to
scale teams and scale
applications

https://puppetlabs.com/2015-devops-report-ppc

© Electric Cloud | electric-cloud.com | @electriccloud

Should I use Microservices?

• If you already have solid CI, automated testing, and
automated deployment, and you’re looking to scale, then
maybe

• If you don’t have automated testing, then you should
probably definitely worry about that first

• You have to be (or become) very good at automated
deployment, testing and monitoring to reap the benefits.

Microservices are not a magic hammer that
will make your other problems go away

© Electric Cloud | electric-cloud.com | @electriccloud

Am I ready for microservices?

• If you’re just starting out, stay
monolithic until you understand the
problem better

• You need to be good at infrastructure
provisioning

• You need to be good at rapid
application deployment

• You need to be good at monitoring
• You need to have good domain/system

comprehension

http://martinfowler.com/bliki/MicroservicePrerequisites.html

© Electric Cloud | electric-cloud.com | @electriccloud

What’s difficult about Microservices?

• Distributed Systems Are Hard
• Service composition is tricky to get right, can be expensive to change
• Inter-process failure modes have to be accounted for
• Abstractions look good on paper but beware of bottlenecks
• Service discovery

• State management – transactions, caching, and other fun things
• Team-per-service or Silo-per-service? + Conway’s Law
• Legacy apps: Rewrite? Ignore? Hybrid?
• Good system comprehension is key
• Your service might be small, but how large is its deployment

footprint?

© Electric Cloud | electric-cloud.com | @electriccloud

(Some) Microservices
Best Practices

© Electric Cloud | electric-cloud.com | @electriccloud

What makes a good micro service?

• Loose coupling
• A change to service A shouldn’t require a change in service B
• Small, tightly focused API

• High cohesion
• Each service should have a specific responsibility
• Domain-specific behavior should be in one place
• If you need to change a behavior, you shouldn’t have to change

multiple services

© Electric Cloud | electric-cloud.com | @electriccloud

What size should my services be?

• The smaller the services, the more
benefit you get from decoupling

• You should be able to (re-)rewrite
one in a “small” number of weeks

• If you can’t make a change to a
service and deploy it without
changing other things, then it’s too
large

• The smaller the service, the more
moving parts you have, so you have
to be ready for that, operationally

© Electric Cloud | electric-cloud.com | @electriccloud

Testing

• If you do lots of manual testing address that first
• Unit testing and service-level testing (with other services

stubbed or mocked)
• End-to-end testing is more difficult with microservices (and

tells you less about what broke)
• Unit tests >> service tests >> end-to-end tests
• Use mocking to make sure side-effects happen as expected
• Consider using a single pipeline for end-to-end tests
• Performance testing is more important than in a monolith
• As always, flaky tests are the devil

© Electric Cloud | electric-cloud.com | @electriccloud

Environments & Deployment

• Keep your environments as close to production as is
practical (Docker/Chef/Puppet, etc)

• One service per host
• Minimize the impact of one service on others
• Minimize the impact of a host outage

• Use VMs/containers to make your life easier
• Containers map very well to microservices
• “Immutable servers”

• PaaS solutions can be helpful, but can also constrain you

Automate all the things!

© Electric Cloud | electric-cloud.com | @electriccloud

MTTR or MTBF?

• There is a point of diminishing returns with testing
(especially end-to-end testing)

• You may be better off getting really good at remediating
production problems
• Monitoring
• Very fast rollbacks
• Blue/green deployments
• Canary deployments

• Not all services have the same durability requirements

© Electric Cloud | electric-cloud.com | @electriccloud

Breaking apart the monolith

• Do it incrementally, not as a big-bang rewrite. You’re going
to get it wrong the first time.

• Look for seams – areas of code that are independent,
focused around a single business capability

• Domain-Driven Design and it’s notion of Domain Contexts is
a useful tool

• Look for areas of code that change a lot (or needs to
change)

• Don’t ignore organizational structure (Conway’s Law)
• Dependency analysis tools can help, but are no panacea

© Electric Cloud | electric-cloud.com | @electriccloud

Breaking apart the monolith - Data

• RDBMS may well be your largest source of coupling
• Understand your schema

• Foreign key constraints
• Shared mutable data
• Transactional boundaries.

• Is eventual consistency OK?
• Avoid distributed transactions if possible

• Split data before you split code
• Do you need an RDBMS at all or can you use NoSQL?

© Electric Cloud | electric-cloud.com | @electriccloud

Things to look out for

• It isn’t necessarily easier to do it this way…
• Your services will evolve over time – you’ll split services, perhaps merge

them, etc. Just accept that.
• You need to be rigorous in handling failures (consider using, e.g. Hystrix

from Netflix to bake in better resiliency)
• Reporting will need to change – you probably won’t have all the data in a

single place (or even a single technology)
• “The network is reliable” (and the rest of the 8 fallacies)
• Be careful about how you expose your data objects over the wire
• “But my service relies on version X of ServiceA and now I’m down”

© Electric Cloud | electric-cloud.com | @electriccloud

Things to Think About

• Consistent logging & monitoring output across services
• Avoid premature decomposition

• If starting from scratch, stay monolithic, keep it modular and split things up as
your understanding of the problem evolves

• Consider event-based techniques to decrease coupling further
• Postel’s Law: “Be conservative in what you do, be liberal in what you

accept from others”

© Electric Cloud | electric-cloud.com | @electriccloud

Monitoring Best Practices
 for Microservices

© Electric Cloud | electric-cloud.com | @electriccloud

https://neo4j.com/blog/managing-microservices-neo4j/

© Electric Cloud | electric-cloud.com | @electriccloud

How does monitoring change?

• Monitoring a monolith is easier than microservices since you
really only have one thing that can break…

• With a large number of services, tracking the root cause of
a failure can be challenging

• Satisfying an end-user request can touch dozens of services

© Electric Cloud | electric-cloud.com | @electriccloud

The Importance of Monitoring

© Electric Cloud | electric-cloud.com | @electriccloud

Monitoring Best Practices

• All services should log and emit monitoring data in a consistent fashion
(even if using different stacks)

• Monitor latency and response times between services
• Monitor the host (CPU, memory, etc)
• Aggregate monitoring and log data into a single place
• Log early, log often
• Understand what a well-behaving service looks like, so you can tell when

it goes wonky
• Use techniques like correlation ids to track requests through the system

• “So then requestId 0xf00dfee8 in the log on ms-app-642-prod becomes
messageId 1125f34c-e34e-11e2-a70f-5c260a4fa0c9 on ms-route-669-prod?”

© Electric Cloud | electric-cloud.com | @electriccloud

Software Pipeline
Best Practices

for Microservices

© Electric Cloud | electric-cloud.com | @electriccloud

Best Practices for CD Pipelines of Microservices-based Apps

• Your Automated Software Pipeline Is Your Friend™
• Ideally, one platform handles all your software delivery
• How’s your test coverage?
• Are your tests automated? Really automated?

• Self-service automation/ChatOps approaches
• Reduce onboarding time, waiting, complexity

• Your solution should provide a real-time view of all the pipelines’ statuses
and any dependencies or exceptions.

• Make sure your deployment pipeline plugs into your monitoring so that
alerts can trigger automatic processes such as rolling back a service,
switching between blue/green deployments, scaling and so on.

© Electric Cloud | electric-cloud.com | @electriccloud

Best Practices for CD Pipelines of Microservices-based Apps

• One repository per service
• Independent CI and Deployment pipelines per service
• “Automate all the things”: plug in all your toolchain to

orchestrate the entire pipeline (CI, testing, configuration,
infrastructure provisioning, deployments, application
release processes, and production feedback loops.)

• Your pipeline must be tools/environment agnostic to
support each team’s workflow and tool chain

• Test automation tools and service virtualization are critical

© Electric Cloud | electric-cloud.com | @electriccloud

Best Practices for CD Pipelines of Microservices-based Apps

• Track artifacts through the pipeline (who checked-in the
code, what tests were run, pass/fail results, on which
environment it was deployed, which configuration was used,
who approved it and so on)

• Bake in compliance into the pipeline by binding certain
security checks and acceptance tests

• Allow for both automatic and manual approval gates
• Create reusable models/processes/automation for your

various pipelines

© Electric Cloud | electric-cloud.com | @electriccloud

Why Microservices in Containers?

• 2002: One service per metal box
• “I remember my first dual-core box, too!”
• “Why is that 32-core server idle all the time? Can I have it?”

• 2007: Hypervisor + 1 VM + Multiple services in that VM
• “Yeah, can’t run ServiceA and ServiceB side by side, conflicting versions of…”
• “Yeah, we did that until ServiceC filled up /tmp and took down ServiceD"
• “Yeah, we tend to run ServiceE by itself once we’re past QA”

• 2012: Hypervisor + Multiple VMs + 1 Service in each VM
• “Yeah, each VM OS has a copy of that in memory, so…”

• 2013: Containers: run multiple services in isolation without the OS
overhead

© Electric Cloud | electric-cloud.com | @electriccloud

Resources

• http://www.infoq.com/presentations/Breaking-the-
Monolith

• http://martinfowler.com/tags/microservices.html
• http://www.amazon.com/Building-Microservices-Sam-

Newman/dp/1491950358
• http://highscalability.com/blog/2014/7/28/the-great-

microservices-vs-monolithic-apps-twitter-melee.html

http://www.infoq.com/presentations/Breaking-the-Monolith
http://www.infoq.com/presentations/Breaking-the-Monolith
http://martinfowler.com/tags/microservices.html
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html

© Electric Cloud | electric-cloud.com | @electriccloud

Thank you!

Questions?

	Slide Number 1
	What are Microservices?
	What’s cool about Microservices?
	Isn’t this just SOA warmed over?
	Can’t I just modularize and use shared libraries?
	What’s good/bad about monolithic apps?
	So…Was Fred Brooks Wrong?
	Should I use Microservices?
	Am I ready for microservices?
	What’s difficult about Microservices?
	(Some) Microservices �Best Practices
	What makes a good micro service?
	What size should my services be?
	Testing
	Environments & Deployment
	MTTR or MTBF?
	Breaking apart the monolith
	Breaking apart the monolith - Data
	Things to look out for	
	Things to Think About
	Monitoring Best Practices� for Microservices
	Slide Number 22
	How does monitoring change?
	The Importance of Monitoring
	Monitoring Best Practices
	Software Pipeline�Best Practices�for Microservices
	Best Practices for CD Pipelines of Microservices-based Apps
	Best Practices for CD Pipelines of Microservices-based Apps
	Best Practices for CD Pipelines of Microservices-based Apps
	Why Microservices in Containers?
	Resources
	Slide Number 32

