@& Electric Cloud

Continuous Delivery of Microservices:
Patterns and Processes

Anders Wallgren Avan Mathur Product
CTO, Electric Cloud Manager, Electric Cloud

@anders_wallgren @Avantika_ec

What are Microservices?

o A pattern for building distributed systems:

* Asuite of services, each running in its own process, each
exposing an API

* Independently developed
* Independently deployable
« Each service is focused on doing one thing well

“Gather together those things that change for the same reason, and
separate those things that change for different reasons.”

- Robert Martin

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

What’s cool about Microservices?

Divide and conquer complex distributed applications

Loose coupling, so each service can:

« choose the tooling that’s appropriate for the problem it solves
e can be scaled as appropriate, independent of other services

e can have its own lifecycle independent of other services

Makes it easier to adopt new technologies
Smaller more autonomous teams are more productive
Better resource utilization

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

Isn’t this just SOA warmed over?

e SOA was also meant to solve the monolithic problem

« No consensus evolved on how to do SOA well (or even what
SOA Is)

 Became more about selling middleware than solving the
problem

« Tends to mandate technology stacks

 Doesn’t address how to break down monoliths beyond ““use
my product to do it”

Microservices evolved out of real world problem solving

© Electr ic Cloud | electr ic-cloud .com | @electr iccloud @EleCtFiC ClOUd

Can’t | just modularize and use shared libraries?

e Technological coupling
 No longer free to use the tools that are fit for purpose

* Generally not able to deploy a new version without
deploying everything else as well

 Makes it much easier to introduce API coupling - process
boundaries enforce good API hygiene

Code reuse is a good thing, but it’s not the
best basis for a distributed architecture

© Electr ic Cloud | electr ic-cloud .com | @electr iccloud @EleCtFiC ClOUd

What’s good/bad about monolithic apps?

» Can be easier to test
e (Can be easier to develop
e Can be easier to deploy

© Electric Cloud | electric-cloud.com | @electricclou

d

Can’t deploy anything until
you deploy everything
Harder to learn and
understand the code
Easier to produce spaghetti
code
Hard to adopt new
technologies
You have to scale
everything to scale
anything

(© Electric Cloud

So...Was Fred Brooks Wrong?

Number of deployments per day per developer

m Low Performers

. Deploy/Day/Dev m Med Performers
Emphatically, no R
But! :

A properly constructed P

microservices architecture Po= —— _
makes it vastly easier to .

scale teams and scale
ap p I I Catl ons https://puppetlabs.com/2015-devops-report-ppc

© Electric Cloud | electric-cloud.com | @electriccloud @ ElectFiC ClOUd

Should | use Microservices?

 If you already have solid Cl, automated testing, and
automated deployment, and you’re looking to scale, then
maybe

e |f you don’t have automated testing, then you should
probably definitely worry about that first

* You have to be (or become) very good at automated
deployment, testing and monitoring to reap the benefits.

Microservices are not a magic hammer that
will make your other problems go away

(© Electric Cloud

© Electric Cloud | electric-cloud .com | @electriccloud

Am | ready for microservices?

* |If you’re just starting out, stay
monolithic until you understand the

You must be

problem better e
* You need to be good at infrastructure
provisioning
* You need to be good at rapid
application deployment ‘j

e You need to be good at monitoring

e You need to have good domain/system
CO m p re h e nS | O n http://martinfowler.com/bliki/MicroservicePrerequisites.html

(© Electric Cloud

© Electric Cloud | electric-cloud.com | @electriccloud

What’s difficult about Microservices?

Distributed Systems Are Hard

« Service composition is tricky to get right, can be expensive to change
e Inter-process failure modes have to be accounted for

« Abstractions look good on paper but beware of bottlenecks

« Service discovery

e State management - transactions, caching, and other fun things
 Team-per-service or Silo-per-service? + Conway’s Law

* Legacy apps: Rewrite? Ignore? Hybrid?

» (Good system comprehension is key

* Your service might be small, but how large is its deployment
footprint?

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

(Some) Microservices
Best Practices

@ ElectricCloud

What makes a good micro service?

* Loose coupling
* A change to service A shouldn’t require a change in service B
« Small, tightly focused API
e High cohesion
« Each service should have a specific responsibility
« Domain-specific behavior should be in one place

* |If you need to change a behavior, you shouldn’t have to change
multiple services

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

What size should my services be?

 The smaller the services, the more
benefit you get from decoupling

* You should be able to (re-)rewrite
one in a “small” number of weeks

 |f you can’t make a change to a
service and deploy it without | o el
changing other things, then it’s too e that thigly
large

 The smaller the service, the more
moving parts you have, so you have
to be ready for that, operationally

G Electric Cloud

© Electric Cloud | electric-cloud.com | @electriccloud

Testing

« If you do lots of manual testing address that first

o Unit testing and service-level testing (with other services
stubbed or mocked)

 End-to-end testing is more difficult with microservices (and
tells you less about what broke)

e Unit tests >> service tests >> end-to-end tests

* Use mocking to make sure side-effects happen as expected

e Consider using a single pipeline for end-to-end tests

e Performance testing is more important than in a monolith

* As always, flaky tests are the devil

© Electr ic Cloud | electr ic-cloud .com | @electr iccloud @EleCtFiC ClOUd

Environments & Deployment

Keep your environments as close to production as is
practical (Docker/Chef/Puppet, etc)

One service per host

e Minimize the impact of one service on others

« Minimize the impact of a host outage

Use VMs/containers to make your life easier

« Containers map very well to microservices

* “Immutable servers”

PaasS solutions can be helpful, but can also constrain you

Automate all the things!

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

MTTR or MTBF?

e There is a point of diminishing returns with testing
(especially end-to-end testing)

* You may be better off getting really good at remediating
production problems
e Monitoring
« Very fast rollbacks
* Blue/green deployments
e Canary deployments

« Not all services have the same durability requirements

(© Electric Cloud

© Electric Cloud | electric-cloud .com | @electriccloud

Breaking apart the monolith

* Do it incrementally, not as a big-bang rewrite. You’re going
to get it wrong the first time.

 Look for seams - areas of code that are independent,
focused around a single business capability

 Domain-Driven Design and it’s notion of Domain Contexts is
a useful tool

* Look for areas of code that change a lot (or needs to
change)

 Don’t ignore organizational structure (Conway’s Law)

 Dependency analysis tools can help, but are no panacea

© Electr ic Cloud | electr ic-cloud .com | @electr iccloud @EleCtFiC ClOUd

Breaking apart the monolith - Data

RDBMS may well be your largest source of coupling
Understand your schema

* Foreign key constraints

« Shared mutable data

e Transactional boundaries.

Is eventual consistency OK?
« Avoid distributed transactions if possible

Split data before you split code
Do you need an RDBMS at all or can you use NoSQL?

© Electr ic Cloud | electr ic-cloud .com | @electr iccloud @EleCtFiC ClOUd

Things to look out for

e Itisn’t necessarily easier to do it this way...

* Your services will evolve over time - you’ll split services, perhaps merge
them, etc. Just accept that.

* You need to be rigorous in handling failures (consider using, e.g. Hystrix
from Netflix to bake in better resiliency)

* Reporting will need to change - you probably won’t have all the data in a
single place (or even a single technology)

 “The network is reliable” (and the rest of the 8 fallacies)
« Be careful about how you expose your data objects over the wire
o ““But my service relies on version X of ServiceA and now I’m down”

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

Things to Think About

Consistent logging & monitoring output across services

Avoid premature decomposition

o |f starting from scratch, stay monolithic, keep it modular and split things up as
your understanding of the problem evolves

Consider event-based techniques to decrease coupling further

Postel’s Law: ““Be conservative in what you do, be liberal in what you
accept from others”

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

Monitoring Best Practices
for Microservices

@ Electric Cloud

Can you check the load balancer?

https://neodj.com/blog/managing-microservices-neo4j/
© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFIC ClOUd

How does monitoring change?

* Monitoring a monolith is easier than microservices since you
really only have one thing that can break...

« With a large number of services, tracking the root cause of
a failure can be challenging

o Satisfying an end-user request can touch dozens of services

(© Electric Cloud

© Electric Cloud | electric-cloud.com | @electriccloud

The Importance of Monitoring

Marius Ducea Retweeted

Honest Status Page (@ honest update - Oct 7
We replaced our monolith with micro services so that every outage could be
more like a murder mystery.

1303 1003 E2MMORNEAC

410 PM - 7 Oct 2015 - Details

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

Monitoring Best Practices

» All services should log and emit monitoring data in a consistent fashion
(even if using different stacks)

* Monitor latency and response times between services
* Monitor the host (CPU, memory, etc)

» Aggregate monitoring and log data into a single place
* Log early, log often

* Understand what a well-behaving service looks like, so you can tell when
it goes wonky

» Use techniques like correlation ids to track requests through the system

* “So then requestld 0xfOOdfee8 in the log on ms-app-642-prod becomes
messageld 1125f34c-e34e-11e2-a70f-5c260a4fa0c9 on ms-route-669-prod?”

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

Software Pipeline
Best Practices
for Microservices

@ ElectricCloud

Best Practices for CD Pipelines of Microservices-based Apps

Your Automated Software Pipeline Is Your Friend™

« Ideally, one platform handles all your software delivery

e How’s your test coverage?

* Are your tests automated? Really automated?

Self-service automation/ChatOps approaches

* Reduce onboarding time, waiting, complexity

* Your solution should provide a real-time view of all the pipelines’ statuses
and any dependencies or exceptions.

* Make sure your deployment pipeline plugs into your monitoring so that

alerts can trigger automatic processes such as rolling back a service,

switching between blue/green deployments, scaling and so on.

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

e E———
Best Practices for CD Pipelines of Microservices-based Apps

* One repository per service

* Independent Cl and Deployment pipelines per service

o “Automate all the things”: plug in all your toolchain to
orchestrate the entire pipeline (Cl, testing, configuration,
Infrastructure provisioning, deployments, application
release processes, and production feedback loops.)

* Your pipeline must be tools/environment agnostic to
support each team’s workflow and tool chain

« Test automation tools and service virtualization are critical

(© Electric Cloud

© Electric Cloud | electric-cloud .com | @electriccloud

Best Practices for CD Pipelines of Microservices-based Apps

* Track artifacts through the pipeline (who checked-in the
code, what tests were run, pass/fail results, on which
environment it was deployed, which configuration was used,
who approved it and so on)

e Bake in compliance into the pipeline by binding certain
security checks and acceptance tests

o Allow for both automatic and manual approval gates

* Create reusable models/processes/automation for your
various pipelines

© Electr ic Cloud | electr ic-cloud .com | @electr iccloud @EleCtFiC ClOUd

Why Microservices in Containers?

2002: One service per metal box

* “l remember my first dual-core box, too!”

* “Why is that 32-core server idle all the time? Can | have it?”

2007: Hypervisor + 1 VM + Multiple services in that VM

“Yeah, can’t run ServiceA and ServiceB side by side, conflicting versions of...”
“Yeah, we did that until ServiceC filled up /tmp and took down ServiceD"
“Yeah, we tend to run ServiceE by itself once we’re past QA”

2012: Hypervisor + Multiple VMs + 1 Service in each VM

“Yeah, each VM OS has a copy of that in memory, so...”

2013: Containers: run multiple services in isolation without the OS
overhead

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFiC ClOUd

Resources

e http://www.infoq.com/presentations/Breaking-the-
Monolith

e http://martinfowler.com/tags/microservices.html

e http://www.amazon.com/Building-Microservices-Sam-
Newman/dp/1491950358

e http://highscalability.com/blog/2014/7/28/the-great-
microservices-vs-monolithic-apps-twitter-melee.html

© Electric Cloud | electric-cloud.com | @electriccloud @ EleCtFIC ClOUd

http://www.infoq.com/presentations/Breaking-the-Monolith
http://www.infoq.com/presentations/Breaking-the-Monolith
http://martinfowler.com/tags/microservices.html
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://www.amazon.com/Building-Microservices-Sam-Newman/dp/1491950358
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html
http://highscalability.com/blog/2014/7/28/the-great-microservices-vs-monolithic-apps-twitter-melee.html

	Slide Number 1
	What are Microservices?
	What’s cool about Microservices?
	Isn’t this just SOA warmed over?
	Can’t I just modularize and use shared libraries?
	What’s good/bad about monolithic apps?
	So…Was Fred Brooks Wrong?
	Should I use Microservices?
	Am I ready for microservices?
	What’s difficult about Microservices?
	(Some) Microservices �Best Practices
	What makes a good micro service?
	What size should my services be?
	Testing
	Environments & Deployment
	MTTR or MTBF?
	Breaking apart the monolith
	Breaking apart the monolith - Data
	Things to look out for	
	Things to Think About
	Monitoring Best Practices� for Microservices
	Slide Number 22
	How does monitoring change?
	The Importance of Monitoring
	Monitoring Best Practices
	Software Pipeline�Best Practices�for Microservices
	Best Practices for CD Pipelines of Microservices-based Apps
	Best Practices for CD Pipelines of Microservices-based Apps
	Best Practices for CD Pipelines of Microservices-based Apps
	Why Microservices in Containers?
	Resources
	Slide Number 32

