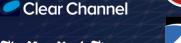


Decade of Change

Change: S&P 500 change

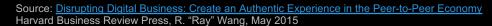
Since 2000, 52 percent of the names on the Fortune 500 list are gone

S&P 500 (2002-2012)



PeopleSoft

S&P 500 (2012 - PRESENT)

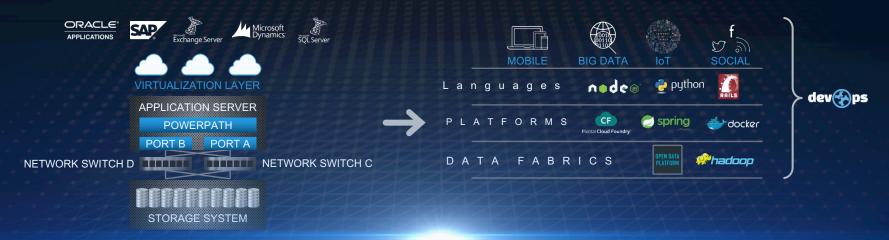


Change: new IT imperatives

PREDICTIVELY
SPOT NEW
OPPORTUNITIES

DELIVER
PERSONAL
EXPERIENCES

INNOVATE IN AN AGILE WAY



OPERATE IN REAL-TIME

DEMONSTRATE TRANSPARENCY AND TRUST

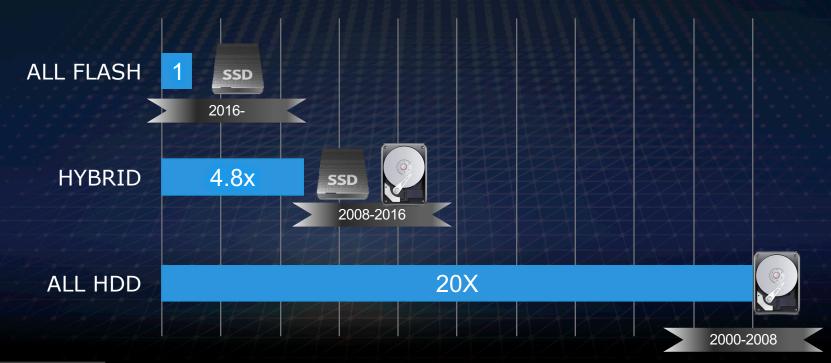
Change: IT technology

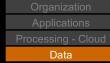
PRIVATE CLOUD

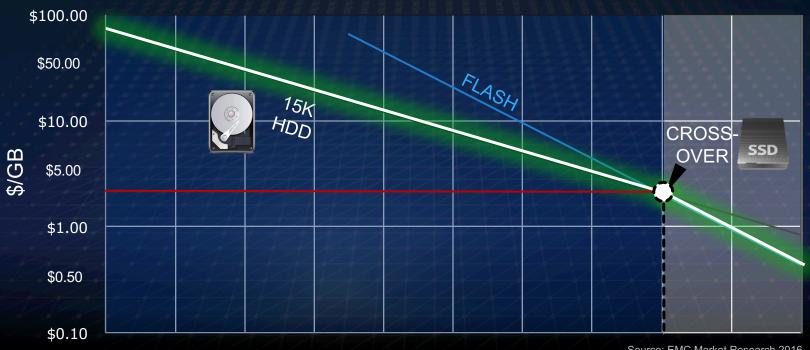
HYBRID CLOUD

PUBLIC CLOUD

EMC² + vmware²



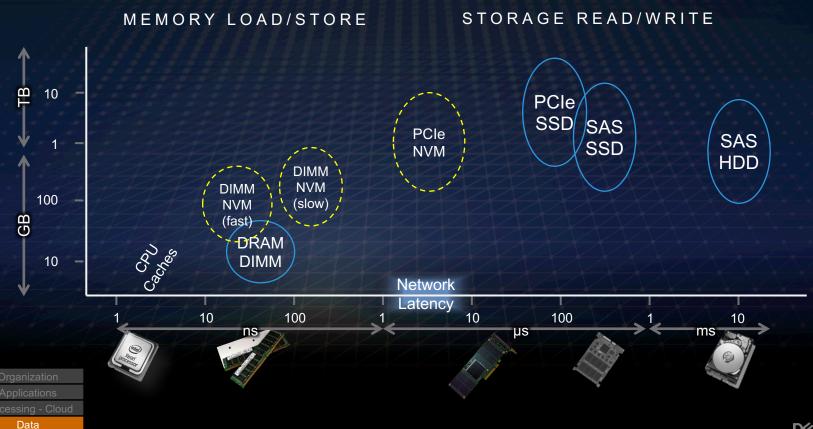

Change or else



Storage performance evolution

Fundamental economics shift to flash

Source: EMC Market Research 2016



THE YEAR OF ALL FLASH FOR PRIMARY STORAGE

Organization
Applications
Processing - Cloud
Data

Memory/storage hierarchy convergence

Persistent data media technologies

NAND

- Samsung, Toshiba/SanDisk, Intel/Micron, SK Hynix
- Transitioning from 2D to 3D, enables 5+ years of capacity & \$/GB scaling

MRAM

- Magnetic field based: Spin Transfer Torque (STT)
- Avalanche, Toshiba/SK Hynix, Everspin, Crocus, IBM, Samsung

3DXP

- Resistance based phase change (PCM-like)
- Intel/Micron the basis of "3D CrossPoint", SK Hynix

RRAM

- Resistance based metal ion bridging: Memristor, CB-RAM
- HP, Crossbar, Micron, Adesto, SK Hynix

NRAM

- Carbon nanotube mesh based
- Nantero, IBM

DRAM

- Samsung, Micron, SK Hynix
- Density NOT keeping up with Moore's Law

Storage media industry roadmap

MEDIA		NAND	RRAM	3DXP*	STT-MRAM	NRAM	DRAM
read laten	су	10,000s ns	100s ns	100s ns	10s ns	10s ns	10s ns
R:W perf		20:1	1:1	2:1	1:1	1:1	1:1
write band	lwidth	~10s MB/s	~100s MB/s	~100s MB/s	~1000s MB/s	~1000s MB/s	~1000s MB/s
retention		weeks	years	months	weeks	years	none
access gra	anularity	block	byte	byte	byte	byte	byte
endurance		104-5	10 ⁵	106+	unlimited	unlimited	unlimited
MLC capa	ble?		yes	Yes	yes	✓n	X
3D capabl	e?		yes	yes	no	yes	no
2017	density	512Gb ^m @50 ³					16Gb @16
(raw est)	cost	<\$0.25/GB					\$3.00/GB

Near term storage media roadmap

MEDIA		NAND		
read latend	СУ	10,000s ns		
R:W perf	20:1			
write band	~10s MB/s			
retention	weeks			
access gra	block			
endurance		104-5		
MLC capal	ble?			
3D capable	e?			
2017	density	512Gb ^m @50 ³		
(raw est)	cost	<\$0.25/GB		

RRAM	3DXP*
100s ns	100s ns
1:1	2:1
~100s MB/s	~100s MB/s
years	months
byte	byte
105	106+
yes	Yes
yes	yes

STT-MRAM	NRAM	DRAM
10s ns	10s ns	10s ns
1:1	1:1	1:1
~1000s MB/s	~1000s MB/s	~1000s MB/s
weeks	years	none
byte	byte	byte
unlimited	unlimited	unlimited
yes	√ n	×
no	yes	no
		16Gb @16
		\$3.00/GB

vs NAND:

- Faster performance
- · Better endurance

vs DRAM:

- · Bigger, cheaper
- Persistent
- Slower

Data

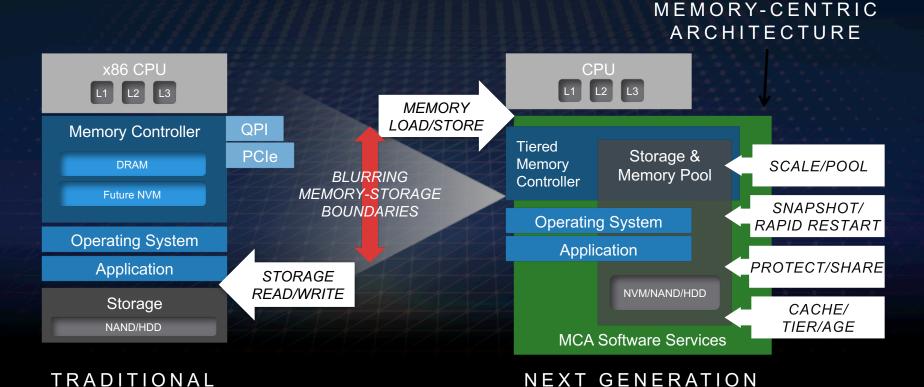
Medium term storage media roadmap

MEDIA		NAND	RRAM	3DXP*
read latency		10,000s ns	100s ns	100s ns
R:W perf		20:1	1:1	2:1
write bandwidth		~10s MB/s	~100s MB/s	~100s MB/s
retention		weeks	years	months
access granularity		block	byte	byte
endurance		104-5	105	106+
MLC capable?			yes	Yes
3D capable?			yes	yes
2017	density	512Gb ^m @50 ³		
(raw est)	cost	<\$0.25/GB		

STT-MRAM	NRAM	DRAM
10s ns	10s ns	10s ns
1:1	1:1	1:1
~1000s MB/s	~1000s MB/s	~1000s MB/s
weeks	years	none
byte	byte	byte
unlimited	unlimited	unlimited
yes	√ n	X
no	yes	no
		16Gb @16
		\$3.00/GB
		7/ // //

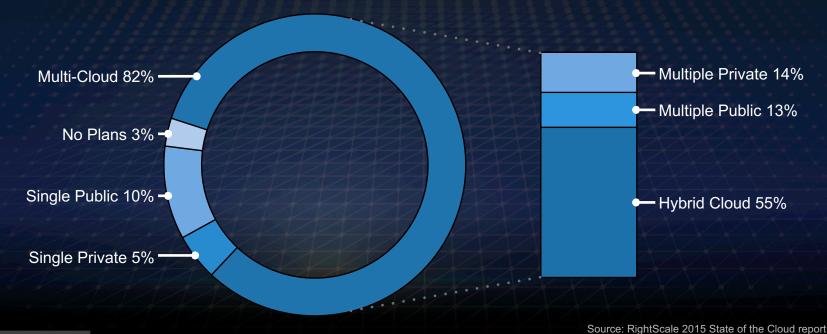
vs NAND:

- Best performance
- Best endurance
- Best retention

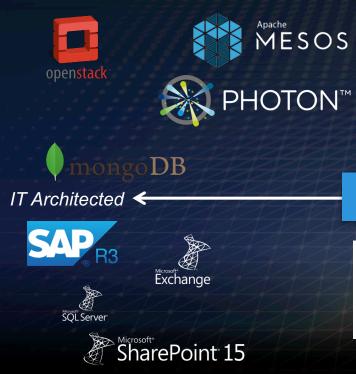

vs DRAM:

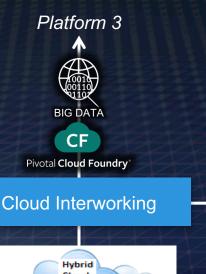
- · Bigger, faster
- Persistent
- · Similar cost

Blurring the memory/storage boundary

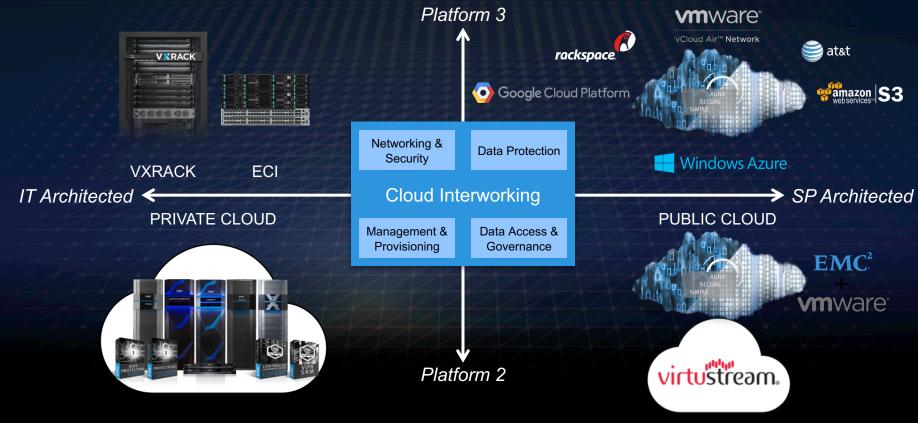

For "born in the memory era" applications

Multi-cloud strategy


It needs multiple cloud services



Application workloads


> SP Architected

Google Apps

Cloud services

Faster application development

Rise to a new iterative agile development models

Applications
Transform
Business

Data Generated By New Applications

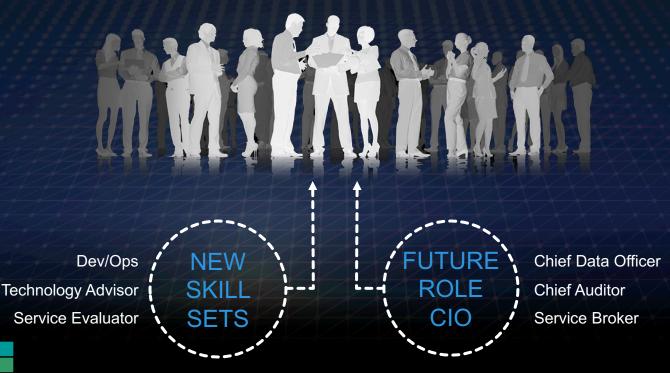
Analytic Insights Drive New Functionality, Which Drives New Data



Application hybridization

- New platforms
 - Enables Dev/OPS
- Consistent experience for the developer and operator
- Cloud choice
 - Lower cost
 - Greater resiliency
 - Great elasticity
 - Prevents cloud lock in

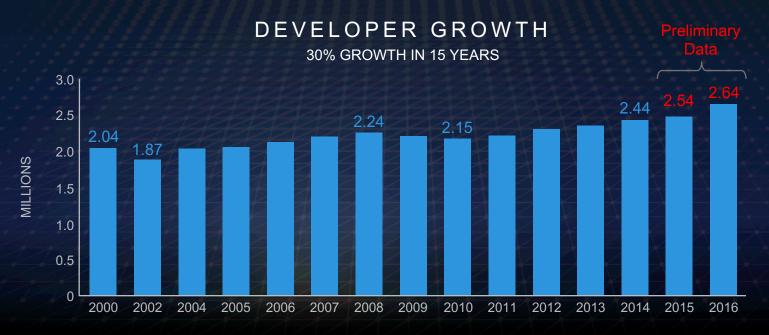
Organization changes


New Ways of Learning Resource Continuous Shortage **MOOCs** University Production Retool Existing New roles

Organization **Applications** Processing - Cloud

Data

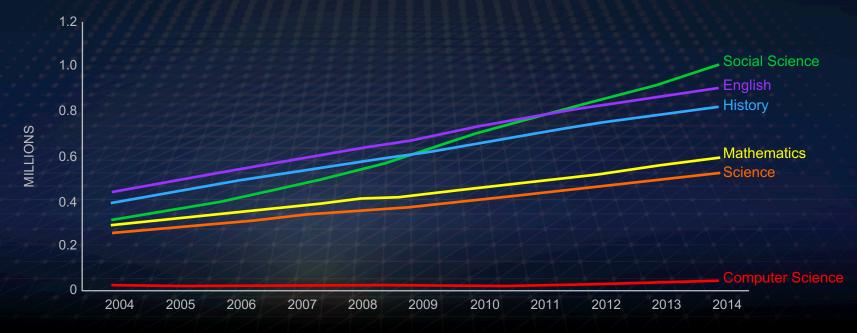
IT organization changes


ORGANIZATION TRANSFORMATION

Organization
Applications
Processing - Cloud
Data

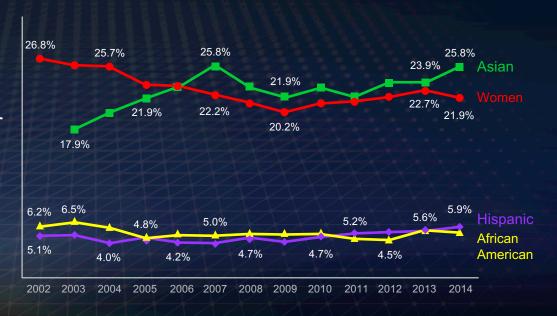
Application developer growth

Supply growing much slower than demand


Source: IDC Model based on US BLS Data

New developers - high school output

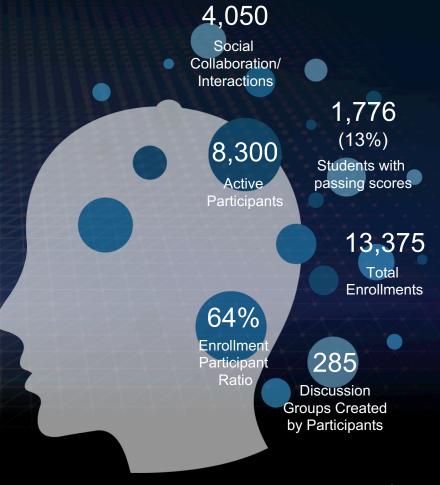
Advanced placement exam subjects


Source: IDC Aggregation of College Board Data

Grow application developer resources

- Application developer participation growing slower than demand
- Significant decline in % of women developers: from 27% to 22% over 12 years
- Flat to declining trend for African American developers

Source: IDC Model based on US BLS Data



New continuous learning

Dell EMC big data analytics MOOC results

"Dell EMC has set a new bar with online learning, user engagement/peer learning, and using technology to drive very cost effective learning and educational efficiencies."

— EdCast

Organization
Applications
Processing - Cloud
Data

New development models

- Accelerated committer status
 - RPI, PAIR Day
 - 6-week mentoring program
- Pivotal Labs methodology
- Bring your-own-project
- Developer and DevOps meetup
- Cloud Foundry contributions
 - New features
 - Technical debt retirement

- Success of business dependent on IT
- New technologies enables new applications
 - Storage media
 - Automated IT "clouds"
 - Application development platforms
- New IT skills and roles
- Retooling IT
 - Continuous learning
 - Mentoring

D&LLEMC