
December	4–9,	2016		|		Boston,	MA
www.usenix.org/lisa16												#lisa16

Release	Pipelines	in	Microsoft	
Ecosystems

Warren	Frame,	Harvard	University

Michael	Greene,	Microsoft



whoami
• Warren	Frame

• Research	Computing	at	Harvard	
University

• @pscookiemonster
• Ramblingcookiemonster
• wframe

• Michael	Greene
• Enterprise	Cloud	Engineering	CAT	

Team	at	Microsoft
• @migreene
• mgreenegit
• migreene

bit.ly/lisa16pipeline



Stuff
• Slides
• Demos!
• Slides	at	bit.ly/lisa16pipeline
• Cleanup,	



Configuration	as	Code
• Everything-as-a-service,	APIs	galore
• Living	documentation
• Abstract	out	complexity.		Scripts	->	Modules	->	DSC	->	key:value
• PowerShell	DSC	is	a	platform	that	all	solutions	can	use	to	deploy	and	

manage	Windows	Server
• Azure	Resource	Manager	templates
• You	still	need	to	know	the	underlying	systems	you	will	manage
• Release	pipelines	can	bring	sanity	and	consistency	to	managing	this



Release	Pipeline

aka.ms/trpmWhy?



Release	Pipelines

Prod	environment	(etc.)…
• Systems	/	Services
• Modules
• Scripts
• Config files



Example	Workflow
• Make	a	change,	push	to	source	control*
• Build	system does	the	rest.		For	example:

• Run	tests	against	your	code
• Spin	up	test	services/infrastructure	for	more	tests
• Build	artifacts	(packages,	configs,	etc.)
• Deploy	things	(artifacts,	systems,	services,	etc.)

*	You	might	run	through	source-build-test	loops	locally	until	happy,	before	pushing



Tooling
“a	bunch	of	random	open	source	projects	bound	together	with	

duct	tape	and	chewing	gum”



Tools:	Source
Git?	Mercurial?	SVN?
CLI:
• Git for	Windows
• PoshGit
GUI:
• GitHub	Desktop
• Atlassian SourceTree
• Many	others



Demo:	Source
Git
Visual	Studio	Code



Tools:	Build	Systems
• Jenkins,	GitLab CI,	VSTS,	etc.
• Prefer	build-as-code

• e.g.	Jenkinsfile,	appveyor.yml,	.gitlab-ci.yml



Tools:	Build	Automation
• Invoke-Build,	psake
• Similar	to	rake,	make,	bake,	cake,	grunt,	gulp,	msbuild,	etc.



Demo:	Build
TFS	2017
psake (build	automation)
github.com/powershell/demo_ci



Tools:	Testing
• Pester:	 Test	framework
• poshspec:	 infrastructure	testing
• OVF:	 Operation-Validation-Framework	- simplify	organizing,	

execution,	and	sharing	of	tests.



Demo:	Test
Pester
poshspec



Tools:	Release
• Octopus	Deploy	and	VSTS

• Many	pre-canned	tasks
• Flexible
• Pretty
• Potentially	$$

• PSDeploy
• Some	pre-canned	tasks
• Deployment	as	code
• Poorly	written
• Open	source

• Random	PowerShell	code
• Fun	to	read	and	maintain!



Demo:	Release
TFS	2017	- Release	management



Tools:	Test	Harness
• Test-Kitchen
• Not	just	for	Chef
• Roughly:

• Run	tests	with	a	verifier
(Pester)	

• against	platforms
(different	vagrant	boxes)

• converged	with	a	
provisioner (dsc)

• with	the	lifecycle	
managed	by	a	driver
(vagrant)

• And	test,	configuration,	
other	files	copied	to	
platforms via	a	transport
(WinRM)

Drivers
• Amazon	EC2
• Azure	Resource	Manager
• DigitalOcean
• Docker
• Google	Compute	Engine
• Hyper-V
• OpenStack
• Vagrant
• vRealize	Automation,	Orchestrator
• vSphere
Provisioners
• Ansible
• CFEngine
• Chef	Solo,	Zero
• DSC
• Puppet
• Salt
• Shell
Verifiers
• Inspec
• Pester
• Shell	(Bats,	Serverspec,	etc.)



Source: GitHub
Build:	 AppVeyor

Build	dependencies: PSDepend
Build	automation: Invoke-Build
Build	helpers:	 BuildHelpers

Test: Pester
Release: PSDeploy

Example	Pipeline



Demo:	Example	Pipeline
https://github.com/RamblingCookieMonster/lisa-kitchen-demo



What	about…
• Secrets

• In	source	control
• Built	into	build	system?
• Secret	management	– vault,	passwordstate,	Secret	Server,	credstash,	etc.

• Images
• Packer!
• Images-as-code
• Build	images	for	Amazon,	VirtualBox,	Azure,	Hyper-V(ish),	etc.



Where	to	start
• Source	Control	and/or	Tests over	entire	pipeline	at	once
• Existing	tools over	resume-driven-development
• New	service(s)	/	value	proposition over	re-engineering

everything
• No	luck	in	house?	Play	with	GitHub+AppVeyor,	VSTS,	etc.



Next	steps
• Open	source	projects	could	use	your	help!
• JIT	provisioning	or	a	dynamic	pools	of	Windows	build	agents
• Windows	Docker	containers	for	testing
• Focus	on	ephemeral	deployments	over	incremental	changes
• Plan	for	day	100



Community	Projects

Map	your	requirements

Plaster Invoke-Build,	psake

Pester

poshspec

OVF

PSDeploy

Lability

PowerShell	
Slack



References,	Diving	Deeper
• The	Release	Pipeline	Model - Michael	Greene,	Steven	Murawski

• Building	a	Simple	Release	Pipeline	in	PowerShell	Using	psake,	Pester,	and	PSDeploy - Brandon	Olin

• Stack	Overflow:	How	We	Do	Deployment	- 2016	Edition - Nick	Craver

• DevOps	Reading	List - Steven	Murawski
• Reading	List - Chris	Hunt

• The	Pester	Pipeline	- Chris	Hunt

• Best	Practices	with	Packer	and	Windows - Matt	Hodgkins

• Introduction	to	Kitchen-DSC - Gael	Colas

• Testing	Ansible	Roles	Against	Windows	with	Test-Kitchen	- Matt	Hodgkins
• Twitter,	Slack,	and	other	communities

• Etc.


