LIBERATED: A fully in-browser client and server
web application debug and test environment

Derrell Lipman
University of Massachusetts Lowell

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Overview of the Client/Server Environment

Server Machine

Client Machine (Browser) Backend Code

Frontend Code Database

E User Interface } ﬁ
TT “Business logic” }

Application ﬁ

Communication
Protocol

| |

Application
Communication
Protocol

i |

HTTP

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Many Skill Sets Required

*Client-side languages:
JavaScript, HTML
In-browser debugging

Comms interface
«JavaScript framework

*Schema desig

> Backend Code
=N
a

Database

1L

“‘Business logic” }

*Server-side languages:
PHP, ASP.net

K/I%rontend Code :girn\fﬁscﬁﬁgr?aec%u%ing
/ S

eDatabase interface
&)
User InterfaceQ

Application
Communication
Protocol

| |

*Human Factors
*Visual Design

Application
Communication
Protocol

i |

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Debugging Difficulties

Client/server interaction 1s asynchronous
Not possible to step into server code from browser

Different people (skill sets) required at client and
server

Methodologies, techniques differ between client and
server

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

My Research Question

Is it feasible to design an architecture and framework
for client/server application implementation that
allows:

all application development to be accomplished primarily in a
single language,

application frontend and backend code to be entirely tested and
debugged within the browser environment, and

fully-tested application-specific backend code to be moved, entirely
unchanged, from the browser environment to the real server
environment, and to run there?

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Desired Architecture

Client Machine (Browser) Server Machine
Backend Code Backend Code
Frontend Code Database Database

User Interface

e
1 |

“Business logic”

Communication Application
Protocol Communication
Protocol

i
1
| 1

APl to web server

Web server Web server

In Browser

HTTP

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Research Sub-questions

How much of a compromise does this
architecture impose, i.e., what common
facilities become unavailable or more
difficult to use?

Does this new architecture create new problems
of its own?

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server

Means to select transport

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server
Means to select transport

JavaScript code to run in-browser or on the real server

Server-side JavaScript
Application communication protocol server

Database operation abstraction

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server
Means to select transport

JavaScript code to run in-browser or on the real server

Server-side JavaScript
Application communication protocol server
Database operation abstraction

Glue: In-browser vs. real server

Interface between database abstraction and the simulated in-
browser, and real databases

Interface from incoming request to server code

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server
Means to select transport

JavaScript code to run in-browser or on the real server

Server-side JavaScript
Application communication protocol server
Database operation abstraction

Glue: In-browser vs. real server

Interface from incoming request to server code

Interface between database abstraction and the simulated in-
browser, and real databases

An application to show that the architecture works

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Introducing LIBERATED

Liberates the developer from the hassles of traditional
client/server application debugging and testing

Currently supports:

Simulation environment (1n browser)
App Engine
Jetty / SQLite
Implemented with gooxdoo JavaScript framework

Provides traditional class-based object programming
model

LIBERATED could be used when developing a non-
gooxdoo-based application

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server

Means to select transport

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Transports

/ Client (browser)\
Application

Application Communication Protocol
(e.g., RPC, RESTful)

11

Web Server

Server

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Adding a Simulation Transport

/ Client (browser)\
Application

- N

Application Communication Protocol
(e.g., RPC, RESTful)

Simulated
Web Server

Server

Web Server

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

The Pieces of the Puzzle

JavaScript code to run in-browser or on the real server

Server-side JavaScript
Application communication protocol server

Database operation abstraction

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Server-side JavaScript

Rhino

Mozilla Foundation
SpiderMonkey

Embedded in some Mozilla products
V8 (Node.js)

Used 1in the Chrome browser

Via Rhino: any Java environment

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

In-browser or real server:
Application Communication Protocol

Common approaches

REST (Representational State Transfer)

RPC (Remote Procedure Call)

XML-RPC
JSON-RPC (Very easy to implement in JavaScript)

“Grow your own”

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

In-browser or real server:
Database Abstraction
Abstract class: Entity

Entity Class Entity Instance

Class Functions Instance Properties
squery () «data

* Retrieve data from one or more » Per-entity field data

tity t in the datab
entity types in the database “brandNew

sregisterPropertyTypes () » Whether this entity was first

» Specify the field values for this retrieved from the database

type of entity

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Entity Type definition for a simple counter

gx.Class.define ("example.ObjCounter",

{
extend : liberated.dbif.Entity,

construct : function (id) {
this.setData ({ "count"™ : 0 });
this.base (arguments, "counter", 1id);

by

defer : function () {
var Entity = liberated.dbif.Entity;

Entity.registerkEntityType (example.ObjCounter,

Entity.registerPropertyTypes (
"counter",
{ "id"™ : "String", "count" : "Integer" },
"id")’.
}
b))

"counter") ;

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

RPC implementation

gx.Mixin.define ("example.MCounter",

{

construct : function () {
this.registerService (
"countPlusOne", this.countPlusOne, ["counterId"]);
I
members : {
countPlusOne : function (counter) {
var counterObj, counterDataObj;

liberated.dbif.Entity.asTransaction (
function () |
counterObj] = new example.ObjCounter (counter);
counterDataObj = counterObj.getDatal() ;
++counterDatalObj.count;
counterObj.put () ;
b, [1, this);

return counterDataObj.count;

});

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

A second example, using a query

// Issue a query of dogs.

results = query(
"app.Dog", // Entity type to query.
{ // search criteria
type "op",
method "and",
children
[
{ field "breed", value "retriever'
{ field "training", wvalue "search"
{ field "age", value 3,
]
}I
[// result criteria
{ type "limit", wvalue : 5 },
{ type "offset", wvalue 10 1},
"sort", field "age", order

{ type
1)

WebApps '12

/ SQL equivalent: \

SELECT * FROM app.Dog
WHERE breed = ‘retriever’
AND training = 'search’

AND age >=3
SORT BY age DESC
OFFSET 10

Q.lMlT 5;

/

' by
I

filterOp ">=" 3

"desc" }

Derrell Lipman, University of Massachusetts Lowell

The Pieces of the Puzzle

Glue: In-browser vs. real server

Interface from incoming request to server code

Interface between database abstraction and the simulated in-
browser, and real databases

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Glue: Using common code in browser or real server

Web server interface:

Request arrived

Sending response

Interface with database

Simulation database
App Engine datastore
SQLite

WebApps '12

Derrell Lipman, University of Massachusetts Lowell

The Pieces of the Puzzle

An application to show that the architecture works

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Incorporating into an application:
App Inventor Community Gallery

App Inventor (Google / MIT)

Blocks programming language (puzzle pieces)
Similar to Scratch, Lego Mindstorms environments

Destination: Android phones

App Inventor Community Gallery

Sharing of source code, libraries, components
Social aspects: “Like It!””, comments

Developed and tested using in-browser backend

Unit/regression tests for individual RPC implementations and for full RPC
round-trip invocation

Runs on App Engine

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Related Work

Nothing else fully answers my research question???

Areas of related work

Google Web Toolkit (GWT)
Plain Old Webserver
Wakanda

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Conclusions

Is it feasible to design an architecture and framework
for client/server application implementation that
allows:

all application development to be accomplished primarily in a
single language,

application frontend and backend code to be entirely tested and
debugged within the browser environment, and

fully-tested application-specific backend code to be moved, entirely
unchanged, from the browser environment to the real server
environment, and to run there?

YES! (with caveats)

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Compromises and New Problems
Imposed by This Architecture

Compromises

Browser database capabilities are limited
Limited number of property types

Required schema

Conversion from native language to JavaScript

Database driver mappings — difficult?
New problems

Server-side JavaScript is still young

Plentiful libraries of code available elsewhere are
not yet here (but Node 1s quickly solving this)

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Future Work

Rigorous evaluation of LIBERATED vs. more
traditional development paradigms.

Determine impact of described compromises
May require implementing parallel environment in
different language

Object relations
Currently ad-hoc, enforced by application

Better browser-based persistent storage
Indexed Database instead of localStorage?

Additional operators 1n queries
Currently only “and” 1s supported

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

Source Code

LIBERATED
https://github.com/liberated/liberated

App Inventor Community Gallery
https://github.com/app-inventor-gallery/aig

WebApps '12 Derrell Lipman, University of Massachusetts Lowell

https://github.com/liberated/liberated
https://github.com/app-inventor-gallery/aig

