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Many Skill Sets Required
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Debugging Difficulties

Client/server interaction 1s asynchronous
Not possible to step into server code from browser

Different people (skill sets) required at client and
server

Methodologies, techniques differ between client and
server
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My Research Question

Is it feasible to design an architecture and framework
for client/server application implementation that
allows:

all application development to be accomplished primarily in a
single language,

application frontend and backend code to be entirely tested and
debugged within the browser environment, and

fully-tested application-specific backend code to be moved, entirely
unchanged, from the browser environment to the real server
environment, and to run there?
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Desired Architecture
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Research Sub-questions

How much of a compromise does this
architecture impose, i.e., what common
facilities become unavailable or more
difficult to use?

Does this new architecture create new problems
of its own?
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The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server

Means to select transport
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The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server
Means to select transport

JavaScript code to run in-browser or on the real server

Server-side JavaScript
Application communication protocol server

Database operation abstraction
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The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server
Means to select transport

JavaScript code to run in-browser or on the real server

Server-side JavaScript
Application communication protocol server
Database operation abstraction

Glue: In-browser vs. real server

Interface between database abstraction and the simulated in-
browser, and real databases

Interface from incoming request to server code
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The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server
Means to select transport

JavaScript code to run in-browser or on the real server

Server-side JavaScript
Application communication protocol server
Database operation abstraction

Glue: In-browser vs. real server

Interface from incoming request to server code

Interface between database abstraction and the simulated in-
browser, and real databases

An application to show that the architecture works
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Introducing LIBERATED

Liberates the developer from the hassles of traditional
client/server application debugging and testing

Currently supports:

Simulation environment (1n browser)
App Engine
Jetty / SQLite
Implemented with gooxdoo JavaScript framework

Provides traditional class-based object programming
model

LIBERATED could be used when developing a non-
gooxdoo-based application
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The Pieces of the Puzzle

Switchable transports

Add local transport to talk to in-browser server

Means to select transport
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Transports
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Adding a Simulation Transport
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The Pieces of the Puzzle

JavaScript code to run in-browser or on the real server

Server-side JavaScript
Application communication protocol server

Database operation abstraction
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Server-side JavaScript

Rhino

Mozilla Foundation
SpiderMonkey

Embedded in some Mozilla products
V8 (Node.js)

Used 1in the Chrome browser

Via Rhino: any Java environment

WebApps '12 Derrell Lipman, University of Massachusetts Lowell



In-browser or real server:
Application Communication Protocol

Common approaches

REST (Representational State Transfer)

RPC (Remote Procedure Call)

XML-RPC
JSON-RPC (Very easy to implement in JavaScript)

“Grow your own”
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In-browser or real server:
Database Abstraction
Abstract class: Entity

Entity Class Entity Instance

Class Functions Instance Properties
squery () «data

* Retrieve data from one or more » Per-entity field data

tity t in the datab
entity types in the database “brandNew

sregisterPropertyTypes () » Whether this entity was first

» Specify the field values for this retrieved from the database

type of entity
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Entity Type definition for a simple counter

gx.Class.define ("example.ObjCounter",

{
extend : liberated.dbif.Entity,

construct : function (id) {
this.setData ({ "count"™ : 0 });
this.base (arguments, "counter", 1id);

by

defer : function () {
var Entity = liberated.dbif.Entity;

Entity.registerkEntityType (example.ObjCounter,

Entity.registerPropertyTypes (
"counter",
{ "id"™ : "String", "count" : "Integer" },
"id")’.
}
b))

"counter") ;
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RPC implementation

gx.Mixin.define ("example.MCounter",

{

construct : function () {
this.registerService (
"countPlusOne", this.countPlusOne, [ "counterId" ]);
I
members : {
countPlusOne : function (counter) {
var counterObj, counterDataObj;

liberated.dbif.Entity.asTransaction (
function () |
counterObj] = new example.ObjCounter (counter);
counterDataObj = counterObj.getDatal() ;
++counterDatalObj.count;
counterObj.put () ;
b, [1, this);

return counterDataObj.count;

});
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A second example, using a query

// Issue a query of dogs.

results = query(
"app.Dog", // Entity type to query.
{ // search criteria
type "op",
method "and",
children
[
{ field "breed", value "retriever'
{ field "training", wvalue "search"
{ field "age", value 3,
]
}I
[ // result criteria
{ type "limit", wvalue : 5 },
{ type "offset", wvalue 10 1},
"sort", field "age", order

{ type
1)
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/ SQL equivalent: \

SELECT * FROM app.Dog
WHERE breed = ‘retriever’
AND training = 'search’

AND age >=3
SORT BY age DESC
OFFSET 10

Q.lMlT 5;

/

' by
I

filterOp ">=" 3

"desc" }
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The Pieces of the Puzzle

Glue: In-browser vs. real server

Interface from incoming request to server code

Interface between database abstraction and the simulated in-
browser, and real databases
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Glue: Using common code in browser or real server

Web server interface:

Request arrived

Sending response

Interface with database

Simulation database
App Engine datastore
SQLite
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The Pieces of the Puzzle

An application to show that the architecture works
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Incorporating into an application:
App Inventor Community Gallery

App Inventor (Google / MIT)

Blocks programming language (puzzle pieces)
Similar to Scratch, Lego Mindstorms environments

Destination: Android phones

App Inventor Community Gallery

Sharing of source code, libraries, components
Social aspects: “Like It!””, comments

Developed and tested using in-browser backend

Unit/regression tests for individual RPC implementations and for full RPC
round-trip invocation

Runs on App Engine
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Related Work

Nothing else fully answers my research question???

Areas of related work

Google Web Toolkit (GWT)
Plain Old Webserver
Wakanda
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Conclusions

Is it feasible to design an architecture and framework
for client/server application implementation that
allows:

all application development to be accomplished primarily in a
single language,

application frontend and backend code to be entirely tested and
debugged within the browser environment, and

fully-tested application-specific backend code to be moved, entirely
unchanged, from the browser environment to the real server
environment, and to run there?

YES! (with caveats)
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Compromises and New Problems
Imposed by This Architecture

Compromises

Browser database capabilities are limited
Limited number of property types

Required schema

Conversion from native language to JavaScript

Database driver mappings — difficult?
New problems

Server-side JavaScript is still young

Plentiful libraries of code available elsewhere are
not yet here (but Node 1s quickly solving this)
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Future Work

Rigorous evaluation of LIBERATED vs. more
traditional development paradigms.

Determine impact of described compromises
May require implementing parallel environment in
different language

Object relations
Currently ad-hoc, enforced by application

Better browser-based persistent storage
Indexed Database instead of localStorage?

Additional operators 1n queries
Currently only “and” 1s supported
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Source Code

LIBERATED
https://github.com/liberated/liberated

App Inventor Community Gallery
https://github.com/app-inventor-gallery/aig
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