Parallelization Primitives for
Dynamic Sparse Computations

June 24, 2013

Tsung-Han Lin, Steve Tarsa, and H.T. Kung
HotPar’13

108 100 S

Dynamic Sparse Computations

* Problem: we want to parallelize sparse
computations where the nonzero variables

are identified only at run time

* Important for many applications in signal
processing and machine learning

Dynamic Sparse Computations
Example 1: Compressive Sensing Recovery

* Recover sparse signals from dense
compressed measurements

Compressed
Recovery measurement

b > il

Random linear
combinations

Sparse signal

Compressive Sensing Recovery Example:
Dynamic MRI

* 3D signal to be recovered is large
— E.g., with 40 100x100 MRI time frames; signal size

Is 400K
Nyquist Low-Res. zero-fill CS
sampling sampling w/dc wavelet + TV

[Lustig 2008]

-
Dynamic Sparse Computations

Example 2: Sparse Coding

* Extract sparse representations based on
predefined/learned dictionaries

Representing image
patches as linear
combinations of a few
low-level features

.
Sparse Coding Example:

Convolutional Neural Networks

* Learning high-level features requires huge
datasets for training
— E.g., Google trains face detector using 10 million
200x200 images

Output Labels

RN\

Input Image X

Coding Pooling Coding Pooling

-
el [Yu 2012]

Feature Extraction ®(x)

-
A Canonical Example of Dynamic Sparse Computation:
Solving Under-constrained Linear Systems

Target signal

] Sparse code
m=a x| = D
7 - N
Measurement vector Sensing matrix
Data vector Dictionary

e Given x and D, infinitely many solutions for z

e Suppose D is well-behaved (e.g., satisfies RIP), we can
recover the correct z by minimizing ||z|

e Efficient iterative algorithms, such as orthogonal
matching pursuit (OMP), are available for recovering z

OMP for Sparse Recovery

Columns corresponding to nonzero unknowns

I

D \ Estimated
— honzero

7 / unknowns
|

e OMP is an iterative algorithm, which is greedy, simple, fast

* |titeratively refines the sparse solution vector

— Outer loop identifies nonzero unknowns and reduces the
problem to be over-constrained

— Inner loop estimates values by solving the over-constrained
system via, e.g., least squares

Parallelizing OMP:
Ping-Ponging on a Bipartite Graph

D is the adjacent
matrix of the graph

D"x ‘l'

Components of x

Components of z

Parallelizing OMP:
Splitting Graph to Multiple Machines

Ping-Ponging in Outer Loop

Compute a “score” for every z,
(highlighted) to identify nonzeros

Ping-Ponging in Inner Loop

Select the nonzeros and compute their
values using the corresponding subgraph
(highlighted)

Two Parallelization Primitives for efficient Parallel
Execution of Dynamic Sparse Computation

Challenge: For efficiency we must limit computation
only to the subgraph corresponding to nonzero
unknowns, but we don’t know them at the outset;
they are determined at run time

We propose the following two primitives for the efficient
identification of these nonzeros in parallel:

 Statistical barrier to identify nonzero unknowns
without having to wait for stragglers

e Selective push-pull to focus computations only on the
selected subgraph

Statistical Barrier

e Continue computation without waiting for the
last straggler

E.g. Leave the barrier
when 80% of z. complete

Finishing a large
fraction of z is likely
to capture sparse
nonzeros

Algorithm is robust
to missing values,
which can be fixed in
the next iteration

Selective Push-Pull

e Support computation on dynamically selected
subgraph
Push Pull (1) Select a subset of
active z,

(2) z. compute and
push update to x

(3) x; compute using
incoming updates

No edge (4) z, pull updates and
SE|ECﬁ0n nEEdEd| continue computation

e
Performance Gains of

Selective Push-Pull on EC2

Static graph

—
o
N

2 """i‘;h‘"es Built selective push-

g
@ 48
£
= X pull on GraphlLab
c .2
§}:°E 10 4 Machines » \/ary sparse recovery
p ém‘ problem size but with
C °
£8 L 5 \ constant sparsity
10 10 10
e 10 Sparse Recovery Problem size Computation time grows
% 8| Selective push-pull due to unnecessary
£ 6 computation
02 4 —
3£ , & Computation time
2 %L —_——— remains constant for
C °
=% 05 . o6 | constant subgraph size

Sparse Recovery Problem size

e
Performance Gains of

Statistical Barrier in Simulation

Straggler stats from MS’s Bing cluster: 25% jobs see high
prop. of stragglers, up to 10x median completion time

95% Barrier

8:2 N : * 95% Barrier trims worst
0.7 stragglers = improves
a 8:2 average time by 2.5x, and
- 0.4 100% Barrier worst case by 4x over rigid
0.2 (rigid barrier)
0.1 75% is too aggressive, and

0 5 10 15 20 25 30 35 40 45 €xtraiterations hurt
OMP Completion Time (sec)

-
Parallel Ping-Pong Applicable to Other

Applications, e.g., Dictionary Learning
for Feature Extraction

T x ;

* Learn an overcomplete dictionary that can
represent data vectors using only a few atoms

N

e K-SVD alternates between optimizingZ and D

Express Dictionary Learning Using
Graphical Model

Dictionary atoms

Sparse representation for
every data vector

Express Dictionary Learning Using
Graphical Model

Dictionary atoms

Sparse representation for
every data vector

* Update Z: compute sparse code for every data vector

 Update D: for a given atom, optimize using associated
data vectors (has nonzero coefficient for the atom)

Express Dictionary Learning Using
Graphical Model

Dictionary atoms

d1

ds 21|%2|%3 Zp
Sparse representation for Statistical barrier to
every data vector f— skip stragglers

* Update Z: compute sparse code for every data vector

 Update D: for a given atom, optimize using associated

data vectors (has nonzero coefficient for the atom)
Selective push-pull to activate

only associated data vertices

e
Conclusion

 We have identified an important class of dynamic
sparse computations on bipartite graphs

* This class of computations can benefit from a
flexible execution model supported by two new
primitives
— Statistical barrier
— Selective push-pull

* There are important applications for machine
learning and signal processing

Express Dictionary Learning Using
Graphical Model

Dictionary atoms

d1

dZ

ds 21|%2|%3 Zp
Sparse representation for Statistical barrier to
every data vector r_ skip stragglers

 Update z: compute sparse code for every data vector

 Update d: for a given atom, optimize using associated

data vectors (has nonzero coefficient for the atom)
Selective push-pull to activate

only associated data vertices

Scheduler

:m for every edge
/end

Task-level —_

parallelism

Vertex-based program

gather();

apply();

for every edge
scatter();
end

Fine-grain execution to
facilitate memory reuse,
data-parallel SIMD

operations, etc.

Pipelined Execution Model

—
==

for every edge | Vertex1

gather();
end

for every edge | Vertex2
gather();

end

apply_l(); Vertex 1

apply_l(); Vertex 2
P/\/\/\/\/l Vertex 1
apply_2();

P/\/\/\/\/l Vertex 2
apply_2();

