
MODELING AND REASONING

ABOUT DOM EVENTS

Benjamin Lerner, Matthew Carroll, Dan Kimmel,

Hannah Quay-de la Vallee, Shriram Krishnamurthi

Brown University

WebApps 2012

Those pesky ads…

Click here

and type

“expo!”

to win!!

Those pesky ads…

Click here

and type

“expo!”

to win!!

Those pesky ads…

Click here

and type

“expo!”

to win!!

Click here

and type

“expo!”

to win!!

What’s really going on here?

Event dispatch, informally

div #page

div #conv

div #msg1

div #msg2

div #reply function(evt) {…}

div #AD

Click

here

and type

“expo!”

to win!!

H E L L O

Event dispatch, informally

div #page

div #conv

div #msg1

div #msg2

div #reply

Handle ‘x’, ‘!’

keypresses

div #AD

Click

here

and type

“expo!”

to win!!

x

Event dispatch, informally

div #page

div #conv

div #msg1

div #msg2

div #reply

Handle ‘x’, ‘!’

keypresses

div #AD
Cancel all but

‘x’, ‘!’

Click

here

and type

“expo!”

to win!!

e x p o !

To understand the execution of any

web page, we have to understand the

model for event dispatch.

Event dispatch, informal summary

div #page

div #conv

div #msg2

div #msg1

div #reply

div #AD

e x p o !

function(evt) {…}

Events

Dispatch path

x

Bubbling

Event listener

Cancel all but

‘x’, ‘!’

Event

cancelation

Event target

Event dispatch – the subtleties

Interactions between mutations and order of operations

• Multiple listeners per event per element

• Tree mutation

• Adding/removing listeners during dispatch

• Legacy “handlers”

• Default actions

Core dispatch algorithm

Pre-dispatch

Build dispatch path

Dispatch-collect
Start

Dispatch-next

Collect list

of listeners
Next node?

JS…

Done

Dispatch

Run

Dispatch-default

Finish

Surely this is all specified?

• Yes, but 

• Specification is 113 pages long

• (Mostly definitions of specific event types)

• Core dispatch algorithm is 16 pages,

• With side references to other specifications!

• Specification is not self-consistent

Example: addEventListener
addEventListener

Registers an event listener, depending on the useCapture parameter, on the capture
phase of the DOM event flow or its target and bubbling phases.

Parameters

type : DOMString

Specifies the Event.type associated with the event for which the user is registering.

listener : EventListener

The listener parameter must be an object that implements the EventListener interface or
a function. If listener is a function then it must be used as the callback for the event;
otherwise, if listener implements EventListener, then its handleEvent method must be
used as the callback.

 useCapture : boolean

If true, useCapture indicates that the user wishes to add the event listener for the
capture and target phases only, i.e., this event listener will not be triggered during the
bubbling phase. If false, the event listener must only be triggered during the target
and bubbling phases.

This parameter must be optional. If not provided, the EventTarget.addEventListener
method must behave as if useCapture were specified to be false.

Modeling the event dispatch

We built a model in Redex of the event dispatch algorithm

• 1000 lines of commented code

• Analyzable

• Testable

• Executable

• Composable

Redex: what and why

• Redex is a framework designed for language engineers

• Makes it easy to:

• Specify operational semantics

• Simulate running of programs

• Examine syntax and state of programs as they run

• Particularly convenient when trying to match web specs:

• Mostly written in an idiomatic, step-by-step manner

addEventListener, revisited

(define-metafunction DOM

 [(addListener LS string_type bool_useCapture loc_listener)

 (addListenerHelper

 (addListenerHelper

 LS string_type target bool_useCapture loc_listener)

 string_type

 ,(if (term bool_useCapture) (term capture) (term bubble))

 bool_useCapture

 loc_listener))))])

Using the model: formal analysis

• Common knowledge about event dispatch:

• “Modifying the tree shouldn’t impact the current dispatch.”

• “Every node gets visited twice (capture and bubble) except the

target.”

• “Event dispatch is deterministic.”

• “Event dispatch terminates.”

• All of these are theorems that hold of our model

• Good for user understanding.

• Good for analyses that rely upon them.

Example: dispatch path is fixed

Dispatch-collect
Start

Dispatch-next

Collect list

of handlers
Next node?

JS…

Done

Dispatch

Run

Dispatch-default

Finish

Pre-dispatch

Build dispatch path
Only state to modify

dispatch path – QED.

That’s nice, so? Model relevance

What assurance do we have that the model reflects reality?

Annotate the correspondence explicitly

Spec text annotations model rules

An informed reader could read both together and confirm

they match.

(Compare the spec for addEventListener with our model)

Using the model: automatic testing

Can automatically construct test cases

• All small trees, random larger ones…

• All pairs of 1-line listeners; random longer ones…

Export

Compare

Simulate Execute

Using the model: debug execution

Two real-world Thunderbird extensions:

• Nostalgy

Using the model: debug execution

Two real-world Thunderbird extensions:

• Thunderbird Conversations

Using the model: debug execution

• Nostalgy: hot-keys for saving messages

• Type ‘S’, then a folder name  save message to folder

• Conversations: “Gmail-like” quick-reply box

• What should happen when you quick-reply with a word

containing ‘s’?

• More importantly, when the “wrong thing” happens, why?

And how should we fix it?

Future Uses

• A full account of dynamic web behavior:

• Events (this work)

• JavaScript

• DOM

• Network

• Storage

• Testing and verification of larger web applications

• …

Recap: Contributions

• A tractable, formal model of web event dispatch

• Analyzable

• Amenable to traditional PL techniques

• Testable

• Has found actual bugs in current browsers

• Executable

• Can help explain odd app behaviors or debug broken extensions

• Composable

• Can be combined with other models for increased precision

