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The network was designed to hide 
fine-grained failure information

“The architecture was to mask completely any 
transient failure.”

“ There are a number of services which are explicitly 
not assumed from the network [including] internal 
knowledge of failures ...”

[D.D. Clark. The design philosophy of the DARPA Internet protocols. 
SIGCOMM 1988]



This design choice is mismatched 
to today’s requirements
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Applications choose a recovery action 
that must work for all failures
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Applications choose a recovery action 
that must work for all failures

If primary crashes, the backup must wait for the lease to 
expire.
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Improve recovery and availability 
using more information about failures

The backup must wait for the lease to expire.
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If the backup knew that the primary had crashed 
then it could immediately take over.



We argue:

The network interface should expose 
information about failures



Outline

• An Interface to failures and its implementation, 
Pigeon.

• Benefits of this Interface to real-world applications.



The network interface should expose 
information about failures

But what failure information should it 
expose?
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failure type to application

• Exposing too many failure types is burdensome.
• Understand semantics of each failure

• New failure type requires updating code

• We need something simpler yet similarly effective.
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Our approach: group remote failures 
that applications handle similarly
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A simple yet effective abstraction
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• Sensors gather local information; extends [Falcon SOSP11].

• Relays transport information to end-hosts.

• Interpreter presents the API to the applications.
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Implementing the interface is 
easy but ...

• Pigeon must detect all possible remote failures and 
tolerate its own failures.

Response: Use end-to-end timeouts.

• Pigeon must report duration of unreachability.
Response: Use previously collected failure data.



Outline

 An Interface to failures and its implementation, 
Pigeon.

• Benefits of this Interface to real-world applications.



Evaluation questions

• Does using the interface improve application 
availability?

• Does using the interface let applications take 
optimal recovery actions?

• How much do all of these benefits cost? 



Our test network

• 16 physical routers running OSPF and connected in 
a 4-port fat-tree topology.

• 12 hosts connected to this network.
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Does distinguishing between host and network 
failures improve application availability?



Distinguishing host and network 
failures reduces unavailability by 4x
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Does reporting network failure information 
improve application availability?
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Does reporting the expected failure duration
improve recovery decisions?
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• RAMCloud may recover even during transient 
problems.



Distinguishing transient and long-lasting 
failures helps avoid unnecessary recovery

For a transient routing problem

# of times 
RAMCloud 
recovered

System 
downtime

Using timeout 10/10 2.8 seconds

With Pigeon 0/10 2.6 seconds



The interface is generally applicable

For a transient routing problem

Application Action taken under Pigeon

RAMCloud wait for problem to resolve

Cassandra pick another primary replica



How much does Pigeon cost?



Pigeon provides benefits at low 
costs

End-host

CPU (2.4 GHz): 3.1 %
Network: 2.3 kbps

Router

LOC

Pigeon (C++, Java) 5400

RAMCloud changes 68

Cassandra changes 414

CPU (480 MHz): 0.3 %
Network: 2.1 kbps



Other related work: network 
monitoring

• For operators: ([Shaikh & Greenberg NSDI04, Kompella et al. NSDI05, Zhao et 

al. SIGCOMM06, Goldberg et al. SIGMETRICS 08])

• For transport: ([Krishnan et al. Computer Networks 2004, Stone & Partridge 

SIGCOMM00, NEH SIGCOMM08])

• For end-host app. 
• Latency: ([King IMW02, Meridian SIGCOMM05])
• State of the network: ([CHHMR WORLDS04, Knowledge Plane 

SIGCOMM03, NetQuery SIGCOMM11, Sophia HotNets03, iPlane OSDI06])
• Loss: ([Packet Obituaries HotNets04])
• Path anomalies: ([PlanetSeer OSDI04])



Take-away points

• The network interface should expose failure 
information to applications.

• The interface should expose host and network 
failures, transient and long-lasting failures.

• This interface can be implemented at low cost (and 
with simple design) and benefits a variety of 
applications. 


