
A new approach to reporting failures
in distributed systems

Joshua B. Leners*, Trinabh Gupta*,

Marcos K. Aguilera¶, and Michael Walfish*

*The University of Texas at Austin
¶Microsoft Research Silicon Valley

Ad hoc failure
handling logic

Failure
detection
module

Target
process

Client
process

“destination
unreachable”

Client

Transient or permanent

Client
process

OS
TCP acks,

ECN

?
Client TargetNetwork

Timeout fires!

??

? ?

?

? ?
[Bertier et al. DSN02, Chen et al. 2002,
ɸ-accrual FD SRDS04, sqrt(S) EuroSys07]

The network was designed to hide
fine-grained failure information

“The architecture was to mask completely any
transient failure.”

“ There are a number of services which are explicitly
not assumed from the network [including] internal
knowledge of failures ...”

[D.D. Clark. The design philosophy of the DARPA Internet protocols.
SIGCOMM 1988]

This design choice is mismatched
to today’s requirements

Universal
recovery not
optimal for

every failure

Apps
choose

universal
recovery

Failures are
diverse

Apps lack
failure

information

Process
crash

Host
crash

Network
partition Stale routing

state

Misconfigured network

Network
congestion

Transmission
errors

Lower application availability

A FAILURE

Applications choose a recovery action
that must work for all failures

Client

Primary Backup

Timeout

Lease
service

Applications choose a recovery action
that must work for all failures

If primary crashes, the backup must wait for the lease to
expire.

Client

Primary Backup

Timeout

Lease
service Network

problem?

Improve recovery and availability
using more information about failures

The backup must wait for the lease to expire.

Client

Primary Backup

Timeout

Lease
service Network

problem?

If the backup knew that the primary had crashed
then it could immediately take over.

We argue:

The network interface should expose
information about failures

Outline

• An Interface to failures and its implementation,
Pigeon.

• Benefits of this Interface to real-world applications.

The network interface should expose
information about failures

But what failure information should it
expose?

Process
crash

Host
crash

Network
partition

Stale routing
state

Misconfigured
network

CPU overload

Network
congestion

Strawman: expose individual
failure type to application

• Exposing too many failure types is burdensome.
• Understand semantics of each failure

• New failure type requires updating code

• We need something simpler yet similarly effective.

Host
reboot And others ...

Our approach: group remote failures
that applications handle similarly

Process
crash

Host
crash

Network
partitionStale routing

state

Misconfigured
network

CPU overload

Network
congestion

Host
reboot

Stop: Target
stopped

permanently

Unreachable: Target
is unreachable

Expected Duration

Warning: Some
resource is depleted

Depleted Resource

A simple yet effective abstraction

Less information
Simple

More information
More benefits

Existing interface

Some failure Process Crash,
Host Crash,
Partition,

Congestion,
etc.

Failure types

Stop,
Unreachable,

Warning

Sensor (S)

Interpreter

Target
process

Client
process

Router

Router

SR Relay (R)

Bird’s eye view of Pigeon

• Sensors gather local information; extends [Falcon SOSP11].

• Relays transport information to end-hosts.

• Interpreter presents the API to the applications.

S

SR S

Implementing the interface is
easy but ...

• Pigeon must detect all possible remote failures and
tolerate its own failures.

Response: Use end-to-end timeouts.

• Pigeon must report duration of unreachability.
Response: Use previously collected failure data.

Outline

 An Interface to failures and its implementation,
Pigeon.

• Benefits of this Interface to real-world applications.

Evaluation questions

• Does using the interface improve application
availability?

• Does using the interface let applications take
optimal recovery actions?

• How much do all of these benefits cost?

Our test network

• 16 physical routers running OSPF and connected in
a 4-port fat-tree topology.

• 12 hosts connected to this network.

Router

Host

Does distinguishing between host and network
failures improve application availability?

Distinguishing host and network
failures reduces unavailability by 4x

Client

Primary Backup

Lease
service

Can’t distinguish host
and network failures

Primary has stopped

6.9 seconds

1.6 seconds

Does reporting network failure information
improve application availability?

Latency

Data DigestDigest

Coordinator

Network

Primary Backup Backup

Client

• Coordinator uses smallest average latency of past
requests to select primary.

Cassandra

0

50

100

150

200

0 5 10 15

Throughput
(reads/sec)

Time (seconds)

With Pigeon

Without Pigeon

Detecting failures quickly helps
Cassandra optimize replica selection

Transient routing
problem

Does reporting the expected failure duration
improve recovery decisions?

Master
Recovery
master

Network

Backup Backup Backup

Client

RAMCloud

• RAMCloud may recover even during transient
problems.

Distinguishing transient and long-lasting
failures helps avoid unnecessary recovery

For a transient routing problem

of times
RAMCloud
recovered

System
downtime

Using timeout 10/10 2.8 seconds

With Pigeon 0/10 2.6 seconds

The interface is generally applicable

For a transient routing problem

Application Action taken under Pigeon

RAMCloud wait for problem to resolve

Cassandra pick another primary replica

How much does Pigeon cost?

Pigeon provides benefits at low
costs

End-host

CPU (2.4 GHz): 3.1 %
Network: 2.3 kbps

Router

LOC

Pigeon (C++, Java) 5400

RAMCloud changes 68

Cassandra changes 414

CPU (480 MHz): 0.3 %
Network: 2.1 kbps

Other related work: network
monitoring

• For operators: ([Shaikh & Greenberg NSDI04, Kompella et al. NSDI05, Zhao et

al. SIGCOMM06, Goldberg et al. SIGMETRICS 08])

• For transport: ([Krishnan et al. Computer Networks 2004, Stone & Partridge

SIGCOMM00, NEH SIGCOMM08])

• For end-host app.
• Latency: ([King IMW02, Meridian SIGCOMM05])
• State of the network: ([CHHMR WORLDS04, Knowledge Plane

SIGCOMM03, NetQuery SIGCOMM11, Sophia HotNets03, iPlane OSDI06])
• Loss: ([Packet Obituaries HotNets04])
• Path anomalies: ([PlanetSeer OSDI04])

Take-away points

• The network interface should expose failure
information to applications.

• The interface should expose host and network
failures, transient and long-lasting failures.

• This interface can be implemented at low cost (and
with simple design) and benefits a variety of
applications.

