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Reaching Out to Millions 

4	  (Source: Jose Vargas, Voices on The Washington Post, November, 2008) 

Obama Raised Half a Billion Online in 2008 



Mobilizing the Masses 
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The Arab Spring, January 2011 - Now 

Salem et al. Civil movements: The impact of Facebook and Twitter. The Arab Social Media Report, 2011 



Predicting the Future: Elections 
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TABLE I
MULTIPLE REGRESSION RESULTS FOR OPINIONFINDER VS. 6 GPOMS

MOOD DIMENSIONS.

Parameters Coeff. Std.Err. t p
Calm (X1) 1.731 1.348 1.284 0.20460
Alert (X2) 0.199 2.319 0.086 0.932
Sure (X3) 3.897 0.613 6.356 4.25e-08 ? ? ?
Vital (X4) 1.763 0.595 2.965 0.004??
Kind (X5) 1.687 1.377 1.226 0.226

Happy (X6) 2.770 0.578 4.790 1.30e-05 ??
Summary Residual Std.Err Adj.R2 F6,55 p

0.078 0.683 22.93 2.382e-13
(p-value < 0.001: ? ? ?, p-value < 0.05: ??, p-value < 0.1: ?)

Calm, Alert, Sure, Vital, Kind and Happy.
The multiple linear regression results are provided in

Table I (coefficient and p-values), and indicate that YOF

is significantly correlated with X3 (Sure), X4 (Vital) and
X6 (Happy), but not with X1 (Calm), X2 (Alert) and X5

(Kind). We therefore conclude that certain GPOMS mood
dimension partially overlap with the mood values provided by
OpinionFinder, but not necessarily all mood dimensions that
may be important in describing the various components of
public mood e.g. the varied mood response to the Presidential
election. The GPOMS thus provides a unique perspective on
public mood states not captured by uni-dimensional tools such
as OpinionFinder.

D. Bivariate Granger Causality Analysis of Mood vs. DJIA
prices

After establishing that our mood time series responds to
significant socio-cultural events such as the Presidential elec-
tion and Thanksgiving, we are concerned with the question
whether other variations of the public’s mood state correlate
with changes in the stock market, in particular DJIA closing
values. To answer this question, we apply the econometric
technique of Granger causality analysis to the daily time
series produced by GPOMS and OpinionFinder vs. the DJIA.
Granger causality analysis rests on the assumption that if a
variable X causes Y then changes in X will systematically
occur before changes in Y . We will thus find that the lagged
values of X will exhibit a statistically significant correlation
with Y . Correlation however does not prove causation. We
therefore use Granger causality analysis in a similar fashion
to [10]; we are not testing actual causation but whether one
time series has predictive information about the other or not7.

Our DJIA time series, denoted Dt, is defined to reflect daily
changes in stock market value, i.e. its values are the delta
between day t and day t� 1: Dt = DJIAt �DJIAt�1. To
test whether our mood time series predicts changes in stock
market values we compare the variance explained by two linear
models as shown in Eq. 3 and Eq. 4. The first model (L1)
uses only n lagged values of Dt, i.e. (Dt�1, · · · , Dt�n) for
prediction, while the second model L2 uses the n lagged values
of both Dt and the GPOMS plus the OpinionFinder mood time
series denoted Xt�1, · · · , Xt�n.

7[10] uses only one mood index, namely Anxiety, but we investigate the
relation between DJIA values and all Twitter mood dimensions measured by
GPOMS and OpinionFinder

We perform the Granger causality analysis according to
model L1 and L2 shown in Eq. 3 and 4 for the period of
time between February 28 to November 3, 2008 to exclude
the exceptional public mood response to the Presidential
Election and Thanksgiving from the comparison. GPOMS and
OpinionFinder time series were produced for 342,255 tweets
in that period, and the daily Dow Jones Industrial Average
(DJIA) was retrieved from Yahoo! Finance for each day8.

L1 : Dt = ↵+
nX

i=1

�iDt�i + ✏t (3)

L2 : Dt = ↵+
nX

i=1

�iDt�i +
nX

i=1

�iXt�i + ✏t (4)

Based on the results of our Granger causality (shown in
Table II), we can reject the null hypothesis that the mood time
series do not predict DJIA values, i.e. �{1,2,··· ,n} 6= 0 with a
high level of confidence. However, this result only applies to
1 GPOMS mood dimension. We observe that X1 (i.e. Calm)
has the highest Granger causality relation with DJIA for lags
ranging from 2 to 6 days (p-values < 0.05). The other four
mood dimensions of GPOMS do not have significant causal
relations with changes in the stock market, and neither does
the OpinionFinder time series.

To visualize the correlation between X1 and the DJIA in
more detail, we plot both time series in Fig. 3. To maintain
the same scale, we convert the DJIA delta values Dt and mood
index value Xt to z-scores as shown in Eq. 1.
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Fig. 3. A panel of three graphs. The top graph shows the overlap of the
day-to-day difference of DJIA values (blue: ZDt ) with the GPOMS’ Calm
time series (red: ZXt ) that has been lagged by 3 days. Where the two graphs
overlap the Calm time series predict changes in the DJIA closing values that
occur 3 days later. Areas of significant congruence are marked by gray areas.
The middle and bottom graphs show the separate DJIA and GPOMS’ Calm
time series.

As can be seen in Fig. 3 both time series frequently overlap
or point in the same direction. Changes in past values of Calm
(t � 3 ) predicts a similar rise or fall in DJIA values (t =

8Our DJIA time series has no values for weekends and holidays because
trading is suspended during those days. We do not linearly extropolate to fill
the gaps. This results in a time series of 64 days.

Predicting the Future: Markets 
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Twitter mood (Calm) predicts Dow Jones Industrial Average (DJIA) 

Bollen et al. Twitter mood predicts the stock market. J. Comp. Sc. March, 2011. 

Day-to-day 
Overlap 

Calm lagged 
by 3 days 
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Socialbots 



Bots and Socialbots 

+ 
Automation 

software 
(to pass off as human) 

Social media 
account 

Socialbot 

Computer program used to perform 
highly repetitive operations (AI?) 
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Rise of the Socialbots 

10	  

The Web Ecology Project 
(Social Engineering), 2011 

Zack Coburn and Greg Marra, Olin College, 2010 

ACM Interactions Magazine 
Cover Story, April 2012 



Misusing Socialbots on a Large Scale? 
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Infiltration Misinformation Data collection 

An automated social engineering tool for: 

Boshmaf et al. The Socialbot Network: When Bots Socialize for Fame and Money. ACSAC’11 
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OSN Security 
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Tolerate Socialbots 
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Abstract
Popular Internet sites are under attack all the time from phishers,
fraudsters, and spammers. They aim to steal user information and
expose users to unwanted spam. The attackers have vast resources
at their disposal. They are well-funded, with full-time skilled labor,
control over compromised and infected accounts, and access to
global botnets. Protecting our users is a challenging adversarial
learning problem with extreme scale and load requirements. Over
the past several years we have built and deployed a coherent,
scalable, and extensible realtime system to protect our users and
the social graph. This Immune System performs realtime checks
and classifications on every read and write action. As of March
2011, this is 25B checks per day, reaching 650K per second at peak.
The system also generates signals for use as feedback in classifiers
and other components. We believe this system has contributed to
making Facebook the safest place on the Internet for people and
their information. This paper outlines the design of the Facebook
Immune System, the challenges we have faced and overcome, and
the challenges we continue to face.

Keywords Machine Learning, Adversarial Learning, Security,
Social Network Security

1. Introduction
The Facebook social graph comprises hundreds of millions of users
and their relationships with each other and with objects such as
events, pages, places, and apps. The graph is an attractive target
for attackers. Attackers target it to gain access to information or to
influence actions. They can attack the graph in two ways: either by
compromising existing graph nodes or by injecting new fake nodes
and relationships. Protecting the graph is a challenging problem
with both algorithmic and systems components.

Algorithmically, protecting the graph is an adversarial learning
problem. Adversarial learning differs from more traditional learn-
ing in one important way: the attacker creating the pattern does not
want the pattern to be learned. For many learning problems the pat-
tern creator wants better learning and the interests of the learner
and the pattern creator are aligned and the pattern creator may even
be oblivious to the efforts of the learner. For example, the receiver
of ranked search results wants better search ranking and may be
oblivious to the efforts being done to improve ranking. The pattern
creator will not actively work to subvert the learning and may even

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.
EuroSys Social Network Systems (SNS) 2011 April 10, 2011, Salzburg
Copyright c� 2011 ACM Jan 1, 2011. . . $10.00

voluntarily give hints to aid learning. In adversarial learning, the
attacker works to hide patterns and subvert detection. To be effec-
tive, the system must respond fast and target the features that are
most expensive for the attacker to change, being careful also not to
overfit on the superficial features that are easy for the attacker to
change.

Attacker 
Detects 

Defender 
Responds 

Begin 
Attack 

Initial 
Detection 

Attacker Controls 

Defender Controls 

Attack Detect 

Defense Mutate 

Figure 1. The adversarial cycle.
This diagram shows the adversarial cycle. The attacker controls the upper
phases and the defender controls the bottom phases. In both Attack and De-
tect phases the attacker is only limited by its own resources and global rate-
limits. During Attack, the attack has not yet been detected and is largely
unfettered. During Detect, the attack has been detected but the system is
forming a coherent response. This includes the time to train a model or ex-
pand the set of bad attack vectors and upload the patterns to online classifier
services. The response can form continuously with some models being de-
ployed earlier than others. During Defense, the attack has been rendered in-
effective. The attacker may eventually detect this and begin Mutate to work
around the defense mechanism. This cycle can repeat indefinitely. The de-
fender seeks to shorten Attack and Detect while lengthening Defense and
Mutate. The attacker seeks the opposite, to shorten the bottom phases while
lengthening Attack and Detect. This cycle illustrates why detection and re-
sponse latencies are so important for effective defense.

Adversarial learning is a cyclical process shown in Figure 1.
An example will make the process more concrete. Several years
ago phishers would attack the graph using spammy messages with
predictable subject lines. The messages included links to phishing
sites. They sent out these messages repeatedly from compromised
accounts to hundreds of friends of the compromised accounts. The
predictable text patterns and volume made these straightforward to
detect and filter. To overcome this filtering, attackers obfuscated by
inserting punctuation, HTML tags, and images into their messages.
As well, the attackers varied their distribution channels to evade de-
tection. The system responded to this by using mark as spam feed-

14	  Stein et al., The Facebook Immune System, EuroSys – SNS, 2011 
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Honest region 

Sybil region 

Attack edges 

Sybil detection via 
social networks1 

With adversary running 
large-scale infiltration2 

Honest node 

1 Haifeng Yu. Sybil Defenses via Social Networks: A Tutorial and Survey. ACM SIGACT News’11 
2 Boshmaf et al. The Socialbot Network: When Bots Socialize for Fame and Money. ACSAC’11 
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Prevent Socialbots 



Observation: It’s all about 
automation  
 
Prevent it and the socialbot threat 
will go away (almost surely) 
 
Not an easy job! 
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Challenges 

Solve at least one 



OSN Vulnerabilities: 
Ineffective CAPTCHAs  

19	  



OSN Vulnerabilities: 
Ineffective CAPTCHAs  
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Koobface Botnet CAPTCHA-solving businesses 

Motoyama et al. Re: CAPTCHAs-Understanding CAPTCHA-Solving Services in an Economic Context. Usenix Security, 2010 
Baltazar et al. The Real Face of Koobface: The Largest Web2.0 Botnet Explained. Trend Micro Threat Research, 2009 



OSN Vulnerabilities: 
Ineffective CAPTCHAs  
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Koobface Botnet CAPTCHA-solving businesses 

Motoyama et al. Re: CAPTCHAs-Understanding CAPTCHA-Solving Services in an Economic Context. Usenix Security, 2010 
Baltazar et al. The Real Face of Koobface: The Largest Web2.0 Botnet Explained. Trend Micro Threat Research, 2009 



#1 
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Design a reverse Turing test that is 
usable and effective even against 
“illegitimate” human solvers 



How about Social Authentication? 
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An'Example'
Use “personal” social knowledge to challenge users 

Kim et al. Social authentication: Harder than it looks. FC’12 
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Histogram'of'A\ack'Advantage'
When'the'number'of'challenge'images'is'1,'

many'people'are'vulnerable'to'impersona.on.'

Even'for'5'challenge'images,'

some'people'can'be'impersonated'with'probability'100%.'

Kim et al. Social authentication: Harder than it looks. FC’12 



OSN Vulnerabilities: 
Fake (Sybil) User Accounts and Profiles 
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#2 
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Guarantee an anonymous, yet credible, 
online-offline identity binding in online and 
open-access systems 



How can we deal with Sybils? 
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Centralized trusted 
authority  

Tie identities to 
resources  

Use external 
information 



OSN Vulnerabilities: 
Large-Scale Network Crawls 
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Effectively limit large-scale Sybil crawls of 
OSNs without restricting users’ social 
experience. 



How about using a credit network? 
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Fig. 5. More complex credit network, with credit available (cij) shown
for each link. In this example, A can transfer 1 credit to D along the path
A → B → C → D. Note that, for simplicity, the links not on this path are
only shown as dashed lines.

can be used for payments between nodes that do not directly
extend credit to each other. For this purpose, nodes can route
credit to a node via network paths that traverse over links with
available credit. (See Figures 4 and 5.)

Formally, a credit network is a directed graph G = (V,E)
where V is the set of nodes and E is the set of labeled edges.
Each directed edge (a, b) ∈ E is labeled with a dynamic scalar
value cab, called the credit available, and is initialized to Cab.
Intuitively, Cab represents the initial credit allocation that b
gives to a, and cab represents the amount of unconsumed credit
that b has extended to a. Note that cab ≥ 0 at all times.

Transactions between two nodes in a credit network are
contingent upon the availability of credit along network paths
connecting the nodes. If a node a wishes to obtain a favor or
resource from b, then a path

a → u1 → ... → un → b

(which could just be a → b) must exist where credits are
available on each (i, j) link (i.e., cij > 0). If so, the credit
available on each directed edge cij on the path from a to b is
decreased and the credit available on each directed edge cji
on the reverse path is increased. As a result of this action,
each node “pays” credits to its successor on the path to b, in
exchange for the favor or service a obtains from b.

2) Credit networks from social networks: One can build
a credit network from a social network as follows: For each
identity in the social network, we generate a node in the credit
network. For each edge between a pair of identities in the
social network, we generate an edge in the credit network
between nodes corresponding to the users. Undirected edges in
the social network (e.g., Facebook friend links) are replaced by
two directed edges, one in each direction, between the nodes
adjacent to the edges. Because social networks are known to
be richly connected [16], [26], credit networks inherit the rich
connectivity they require for liquidity [24].

Further, each directed edge, (a, b), is assigned an initial
credit allocation Cab by the destination node b. The system
must exercise care when assigning credit allocations. For
instance, when a new social link is created, the requesting
node should be required to grant the accepting node some
initial credit but not vice-versa, to prevent an attacker from
obtaining credit by initiating social links.

3) Sybil tolerant nature of credit networks: Next, we show
that credit networks built from social networks are naturally

5

2

3
9

X

2
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X

1

X2

X3

Rest of the network

Fig. 6. Credit networks leading to Sybil tolerance. User X can create any
number of identities (X1, X2, X3) and arbitrarily assign the credit available
between them. However, does not enable any additional available credit with
nodes in the rest of the network.

tolerant to Sybil attacks. Specifically, we argue that a Sybil
attacker cannot increase the credit available to her from the
rest of the network.

An attacker can mount a Sybil attack by creating many
different identities in the social network, each corresponding
to a different node in the credit network. However, per our
assumptions about credit assignment to links, having many
user accounts does not by itself allow the attacker to obtain
additional available credit with other users (though she can
create an arbitrary number of links with arbitrary credit
between her Sybil identities).

As shown in Figure 6, the total amount of credit available
to a single user is the sum of the credit available on her links
to other (human) users. An attacker with an arbitrary number
of Sybil identities has exactly the same available credit as
the attacker with just one identity; in this case, the relevant
set of edges is the cut between the subgraph consisting of
the attacker’s Sybil identities and the rest of the network.
Any credit available on edges between the attacker’s Sybil
identities does not matter, because it does not enable additional
“purchases” from legitimate nodes. Thus, available credit in a
credit network is resilient to Sybil attacks [27].

C. Challenges building credit network-based Sybil tolerance

We now discuss the key challenges associated with building
credit network-based Sybil tolerance systems. This includes

Well-behaved nodes Misbehaving (possibly Sybil) nodes

Edge cut

3

8

2

7

Fig. 7. Edge cut between well-behaved nodes (hollow) and misbehaving
nodes (solid). The total credit available to the misbehaving nodes is 5 (3+2),
regardless of the number of Sybil identities created. Note that the links that
are not along the edge cut are shown as dashed lines, for simplicity.

30	  Viswanath et al. Exploring the design space of social network-based Sybil defenses. COMSNETS’12 
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a credit network from a social network as follows: For each
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between nodes corresponding to the users. Undirected edges in
the social network (e.g., Facebook friend links) are replaced by
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adjacent to the edges. Because social networks are known to
be richly connected [16], [26], credit networks inherit the rich
connectivity they require for liquidity [24].

Further, each directed edge, (a, b), is assigned an initial
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must exercise care when assigning credit allocations. For
instance, when a new social link is created, the requesting
node should be required to grant the accepting node some
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tolerant to Sybil attacks. Specifically, we argue that a Sybil
attacker cannot increase the credit available to her from the
rest of the network.

An attacker can mount a Sybil attack by creating many
different identities in the social network, each corresponding
to a different node in the credit network. However, per our
assumptions about credit assignment to links, having many
user accounts does not by itself allow the attacker to obtain
additional available credit with other users (though she can
create an arbitrary number of links with arbitrary credit
between her Sybil identities).

As shown in Figure 6, the total amount of credit available
to a single user is the sum of the credit available on her links
to other (human) users. An attacker with an arbitrary number
of Sybil identities has exactly the same available credit as
the attacker with just one identity; in this case, the relevant
set of edges is the cut between the subgraph consisting of
the attacker’s Sybil identities and the rest of the network.
Any credit available on edges between the attacker’s Sybil
identities does not matter, because it does not enable additional
“purchases” from legitimate nodes. Thus, available credit in a
credit network is resilient to Sybil attacks [27].
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We now discuss the key challenges associated with building
credit network-based Sybil tolerance systems. This includes
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Small	  edge	  cut	  

Assump9on	  #1	  

Assump9on	  #2	  

31	  Viswanath et al. Exploring the design space of social network-based Sybil defenses. COMSNETS’12 



OSN Vulnerabilities: 
Exploitable Platforms and APIs 
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#4 
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Detect abusive and automated usage of 
OSN platforms and their social APIs across 
the Internet 



OSN Vulnerabilities: 
Poorly Designed Privacy/Security Controls 
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#5 
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Develop usable OSN security and privacy 
controls that help users make more 
informed decisions 
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Take-home message(s) 
•  Large-scale infiltration is feasible 

–  has serious privacy and security implications 

•  Socialbots make it difficult for OSN security 
defenses and their users to detect their true 
nature 
–   defending against such bots raises a set of 

unique challenges 

•  Effective, socio-technical defenses less 
vulnerable to both human and technical 
exploits are needed 
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Socialbot Network: Concept 
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Botmaster 

C&C Channel 

SocialBots 

Online Social Network 

BotHerder 
SocialBot 

Infiltrated user (randomly picked) 

Infiltrated user (with mutual friends) 

Boshmaf et al. The Socialbot Network: When Bots Socialize for Fame and Money. ACSAC’11 



Prototype Architecture 
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Methodology 

•  Prototype on Facebook 
•  102 Socialbots, single Botmaster 
•  Operated for 8 weeks (Spring 2011) 
•  Single machine  

•  Different IPs 
•  HTTP proxy emulating different 

browsers and OSs 
•  Approved by UBC ethics board 
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Most Users Decide Within Three Days 
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Figure 3: Degree distribution
of the generated random sam-
ple of Facebook user profiles.
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Figure 4: Cumulative distribu-
tion of number of days and ac-
cepted friendship requests.
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Figure 5: Overall infiltration as
a function of number of mutual
friends.

We carefully designed our experiment in order to reduce
any potential risk at the user side by following known prac-
tices [7], and got the approval of our university’s behavioral
research ethics board. We strongly encrypted and properly
anonymized all collected data, which we have completely
deleted after we finished our planned data analysis.

4.2 The Facebook SbN
Figure 2 shows the architecture of the SbN we developed.

Each socialbot ran the same software and was equipped with
only one native command; status_update. We implemented
the generic operations described in Table 1 using two tech-
niques: API calls and HTTP-request templates, which we
now briefly describe. First, we exploited Facebook’s Graph
API [1] to carry out the social-interaction operations. The
API, however, requires the user (i.e., the socialbot in this
case) to be logged in to Facebook at the time of any API
call. To avoid this, we developed a Facebook application
that fetches permanent OAuth 2.0 access tokens that al-
low each socialbot to send API calls without the need to
login. Second, for the social-structure operations, we used
pre-recorded HTTP-request templates that allow each so-
cialbot to send friendship requests as if they were sent from
a browser. We used an API provided by iheartquotes.com

to pull random quotes and blurbs which we used as mes-
sages for the status updates. As for the botmaster software,
we implemented the botworker to interface with three useful
websites: decaptcher.com; a CAPTCHA-breaking business,
hotornot.com; a photo-sharing website, and mail.ru; an
email provider. We also implemented the botupdater with
an enhanced functionality to update the HTTP-request tem-
plates, along with any new native commands. Finally, we
implemented all master commands described in Table 2.

The master command rand_connect requires some extra
attention. On Facebook, each profile has a unique ID that
is represented by a 64-bit integer and is assigned at the time
the profile is created. In order to get a uniform sample
of Facebook profiles, we decided to use a simple random
sampling technique called rejection sampling [34], which we
now descirbe. First, we generated 64-bit integers at random,
but with a range that is reduced to the known ID ranges used
by Facebook [15]. Next, we tested whether each generated
ID mapped to a real profile by probing the profile page using
this ID. Finally, if the profile existed, we included the profile
ID in the random sample only if this profile was not isolated.
We define an isolated user profile as a profile that does not
display its “friends list” or has no friends of Facebook.

We deployed the simple two-state native controller and the

three-phase, many-state master controller. We acknowledge,
however, that more sophisticated controllers could be used
that, for instance, employ some machine learning algorithms
in order to improve the potential infiltration.

4.3 Operating the Facebook SbN
We operated the Facebook SbN for 8 weeks. The social-

bots were able to send a total of 8,570 friendship requests,
out of which 3,055 requests were accepted by the infiltrated
users. We divide the following discussion according to the
three phases of the master controller.

4.3.1 Setup
We created 102 socialbots and a single botmaster, all of

which are physically hosted on one machine for simplicity.
A botherder, however, could resort to a more sophisticated
deployment such as a P2P overlay network. Even though
we could have built the socialbots automatically using the
botworker, we decided to create them manually as we had no
intention to support any CAPTCHA-breaking business. In
total, we created 49 socialbots that had male user profiles
(referred to as m-socialbots), and 53 socialbots that had
female user profiles (referred to as f -socialbots).

4.3.2 Bootstrapping
The socialbots generated a random sample of 5, 053 valid

profile IDs. These IDs passed the inclusion criteria we dis-
cussed in Section 4.2. Figure 3 shows the degree distribution
of this sample.4

Based on a pilot study, we decided to send 25 friendship
requests per socialbot per day in order to avoid CAPTCHAs.
The socialbots took 2 days to send friendship requests to all
of the 5, 053 profiles. In total, exactly 2, 391 requests were
sent from m-socialbots and 2, 662 from f -socialbots. We
kept monitoring the status of the requests for 6 days. Over-
all, 976 requests were accepted with an average acceptance
rate of 19.3%. In particular, 381 of the accepted requests
were sent from m-socialbots (15.9% acceptance rate), and
595 were sent from f -socialbots (22.3% acceptance rate).
About 86% of the infiltrated profiles accepted the requests
within the first three days of the requests being sent, as
shown in Figure 4. Overall, the SbN spent two weeks in the
bootstrapping phase. For most of that time, however, the
SbN was setting idle.

4The degree of a node is the size of its neighborhood, and
the degree distribution is the probability distribution of these
degrees over the whole network (or a sample of it).
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Figure 4: Degree distribution of the
generated random sample of Face-
book user profiles during the boot-
strapping phase, with a sample size
of 5,053 valid profile identities.

0 1 2 3 4 5 6
Number of days

20

40

60

80

100

%
 o

f a
cc

ep
te

d 
re

qu
es

ts
 (C

D
F)

Figure 5: Cumulative distribution
function of number of days it took
to observe a fraction of the overall
accepted friendship requests during
the bootstrapping phase.
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Figure 6: Average acceptance rate
of the resulted infiltration as a
function of the number of mutual
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infiltrated users. (95% conf.)
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Figure 7: Average acceptance rate as
a function of the number of friends a
user profile has during the bootstrap-
ping phase. (for the requests sent by
m-socialbots, 95% conf.)
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Figure 8: Average acceptance rate as
a function of the number of friends a
user profile has during the bootstrap-
ping phase. (for the requests sent by
f -socialbots, 95% conf.)
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all infiltration among the socialbots.
A point in the figure represents how
many socialbots infiltrated the corre-
sponding number of user profiles.
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Figure 6: Data revelation of se-
lected profile info before and af-
ter a large-scale infiltration.
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4.3.3 Propagation
We kept the SbN running for another 6 weeks. During this

time, the socialbots added 3, 517 more user profiles from
their extended neighborhoods, out of which 2, 079 profiles
were successfully infiltrated. This resulted in an average ac-
ceptance rate of 59.1%, which, interestingly, depends on how
many mutual friends the socialbots had with the infiltrated
users, and can increase up to 80% as shown in Figure 5.

By the end of the eighth week, we decided to take the
SbN down as it resulted in a heavy tra�c with Facebook.
In total, the SbN generated approximately 250GB inbound
and 3GB outbound tra�c. We consider the operation time a
conservative estimate of the real performance of the SbN as
we paused it several times for debugging and data analysis,
especially during the bootstrapping phase. We believe that
operating the SbN for a longer time is expected to increase
the average acceptance rate as the propagation phase will
have a higher contribution.

4.4 Harvested Data
As the socialbots infiltrated Facebook, they harvested a

large set of users’ data. We were able to collect news feeds,
users’ profile information, and “wall”messages. We decided,
however, to only focus on users’ data that have monetary
value such as Personally Identifiable Information (PII).

After excluding all remaining friendships between the so-
cialbot, the total size of all direct neighborhoods of the so-
cialbots was 3,055 profiles. The total size of all extended
neighborhoods, on the other hand, was as large as 1,085,785
profiles. In Table 3, we compare users’ data revelation of
some PII before and after operating the SbN, as a percent-
age of the neighborhoods size.

To emphasize its significance, we visualize the data reve-
lation di↵erence of selected profile information in Figure 6.
We include all user profiles from both the direct and the ex-
tended neighborhoods of the socialbots, which added up to
1,088,840 profiles. Each bar in the figure is annotated with
two numbers in x/y format, where x and y represent the
number of profiles with accessible profile information before
and after a large-scale infiltration, respectively.

5. DISCUSSION
In what follows, we discuss the results presented in the

previous section and focus on four main points: the observed
users’ behavior, the e↵ectiveness of the Facebook Immune
System, the infiltration performance of the socialbots, and
the expected implications on other software systems.

Table 3: Data revelation as % of neighborhoods size.
Neighborhoods Direct(%) Extended(%)
Profile Info Before After Before After
Gender 69.1 69.2 84.2 84.2
Birth Date 03.5 72.4 04.5 53.8
Married To 02.9 06.4 03.9 04.9
Worked At 02.8 04.0 02.8 03.2
School Name 10.8 19.7 12.0 20.4
Current City 25.4 42.9 27.8 41.6
Home City 26.5 46.2 29.2 45.2
Mail Address 00.9 19.0 00.7 01.3
Email Address 02.4 71.8 02.6 04.1
Phone Number 00.9 21.1 01.0 01.5
IM Account ID 00.6 10.9 00.5 00.8
Average 13.3 34.9 15.4 23.7

5.1 Users’ Behavior
Given the results presented in Section 4, someone might

ask: are the infiltrated profiles real after all, or are they
just other socailbots? To begin with, notice that during the
bootstrapping phase, the socialbots targeted profiles that
were picked at random out of millions of user profiles, and
thus, it is highly unlikely to have picked mostly socialbots.
We also support this argument by the following analysis of

the observed users’ behavior. First of all, consider Figure 5.
The big jump in the acceptance rate from users who were
picked at random to those with whom the socialbots had
some mutual friends is expected. It directly exhibits the
e↵ect of the triadic closure principle, which predicts that
having mutual friends will improve the liklihood of accepting
a friendship request as discussed in Section 3.4.2. The triadic
closure, interestingly, also operated from the users side; the
socialbots received a total of 331 friendship requests from
their extended neighborhoods.
Second, the behavior depicted in Figure 4 matches the

o�cial statistics about real users on Facebook: 50% of the
750 million active Facebook users log on in any given day [3],
and thus, it is expected that approximately half of the ac-
cepted friendship requests are observed within one day of
the requests being sent.
Third and last, the users who were infiltrated during the

bootstrapping phase, that is, those who were selected at
random, showed another expected behavior [39]: the more
friends they had, the higher the chance was that they ac-
cepted a friendship request from a socialbot (i.e., a stranger),
as shown in Figure 7.
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