JJONRC GOUgle"Miﬁggearch

// RESEARCH

Real Time Network Policy Checking
Using Header Space Analysis
Peyman Kazemian
with

Michael Chang, Hongyi Zeng, George Varghese,
Nick McKeown, Scott Whyte

NSDI 2013 — Lombard, IL

Network debugging is hard!

 Forwarding state is hard to analyze!

/Y

 Rule

Rule

ﬁm

Network debugging is hard!

* Forwarding state is hard to analyze!

1.
2.

3.
4.

Distributed across multiple tables and boxes.

Written to network by multiple independent
writers (different protocols, network admins)

Presented in different formats by vendors.
Not directly observable or controllable.

* Not constructed in a way that lend itself well
to checking and verification.

Header Space Analysis: Snapshot-based Checking

1

L]
1

w
a

> |

Can host a talk to host b?

Is there any forwarding loop in the network?

Steam-based Checking

L]
il
1]

+

il

|

Steam-based Checking

Time Set of Policies/Invariants
Yes/No

Prevent errors before they hit network.
Report a violation as soon as it happens.

Outline

NetPlumber: Real time policy checking tool.
— How it works?
— How to check policy?

— How to parallelize?
Evaluation on Google WAN.
Conclusions.

NetPlumber

* The System we build for real time policy
checking is called NetPlumber.

-
(Logically centralized location

1 to observe the state changes. |
MLACI-T Y NetPlumber

NetPlumber

* The System we build for real time policy
checking is called NetPlumber.

— Creates a dependency graph of all forwarding
rules in the network and uses it to verify policy.

— Nodes: forwarding rules in the network.

— Directed Edges: next hop dependency of rules.
Switch 1 Switch 2

P

NetPlumber — Nodes and Edges

“’“@
SF Rear | gl e e
S

=

B s

e
g

NetPlumber — Intra table dependency

=
)

S e
| B g
I=m=

|»

|»

NetPlumber — Computing Reachability

Source 3
Node

NetPlumber — Computing Reachability

1) Create directed edges

Source 3
Node

NetPlumber — Computing Reachability

1) Create directed edges
2) Route flows
3) Update intra-table dependency

Source
Node

NetPlumber — Checking Policy

S
“anpmaal=a"a

\p
A

D
L P N

B LS
S

‘\@

e
===

PIy
ough RED box

NetPlumber — Checking Policy

Policy: packets go
through RED box.

Checking Policy with NetPlumber

Policy: Guests can not access Server S.

Checking Policy with NetPlumber

Policy: http traffic from client C to server S doesn’t go through more than 4 hops.

proasel

{Vf|f.header ~ http} fpath ~

& .
\/fg 2
HTTP : , :
\— %\ —

S| NP

18

Checking Policy with NetPlumber

Policy: traffic from client C to server S should go through middle box M.

Vf | f.path ~

e

TAN

(p=0C)|} fpathw Tt

N
~
.
.
.
~1

\

19

Why the dependency graph helps

* Incremental update.

— Only have to trace through dependency sub-graph
affected by an update.

* Flexible policy expression.

— Probe and source nodes are flexible to place and
configure.

e Parallelization.

— Can partition dependency graph into clusters to
minimize inter-cluster dependences.

Distributed NetPlumber

-
B VAN,
I Y

N
A

21

Dependency Graph Clustering

©<H - % . \/
' | — /]

LL

00
/
%

i
I

22

Outline

Motivations.

NetPlumber: Real time policy checking tool
— How it works?
— How to check policy?

— How to parallelize?
Evaluation on Google WAN.

Conclusions.

Experiment On Google WAN

* Google Inter-datacenter WAN.
— Largest deployed SDN, running OpenFlow.
— ~143,000 OF rules.

Experiment On Google WAN

* Policy check: all 52 edge
switches can talk to each
other.

* More than 2500 pairwise . OF
reachability check. o’ .o

* Used two snapshots taken
6 weeks apart.

e Used the first snapshot to
create initial NetPlumber
state and used the diff as a
sequential update.

Experiment On Google WAN

Default/Aggregate Rules.

TATE e T F T LT T AR L et T T T TR T AT e e

..........

..............

/X

Run time with Hassel > 100s ‘

..............

- = = 2 instances
- - 1= = =3instances
11l = = = 4instances

Single instance | :::::

5 instances
0 T B A I W T T B A T iiiiii
107 107 10° 10' 10° 10°
Run Time of NetPlumber (ms) }
‘ Not much more benefit!

#instances: 1 2 3 4 5) 8
median (ms) | 0.77 0.35 0.23 0.2 0.185| 0.180

mean (ms) | 5.74 1.81 152 1.44 139 | 1.32

27

Benchmarking Experiment

* For a single pairwise reachability check.

#Network: Google Stanford Internet 2

Run Time mean median | mean median | mean median
Add Rule (ms) | 0.28 0.23 0.2 0.065 0.53 0.52
Add Link (ms) | 1510 1370 3020 2120 4760 2320

Conclusions

* Designed a protocol-independent system for
real time network policy checking.

 Key component: dependency graph of
forwarding rule, capturing all flow paths.
— Incremental update.

— Flexible policy expressions.
— Parallelization by clustering.

Thank Youl!

