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Performance Unpredictability

Graph (Wed Apr 03 08:05:40 EDT 2013 to Thu Apr 04 09:00:00 EDT 2013):
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ongestion Kills Predictability




Congestlon K|IIs Predlctablllty
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Key Issue
Today’s transport (TCP/UDP) lacks
predlctablllty in sharmg bandW|dth
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Status Quo is Insufficient
. TCP

— Cannot force all to use TCP or agree on one TCP
version!

— Sharing is per-flow: not built for predictability

e Performance Isolation with Per-tenant Queues

— State management complexity: >10k tenants,
configuring queues on all links is an operational
nightmare

— WFQ/DRR does not ensure admissibility
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Where does Congestion Happen?
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Congestion Study on Windows Azure
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by
oy ieation (%) Hottest storage cluster:
o ~ 1000x more drops at
40% -~ the Edge, than Core.
30% - —
20% - —
10% - - 16 of 17 clusters:
0% - | I .
Core Edge 0 drops in the Core.

Timescales: over 2 weeks,
99.9t" pcile = several minutes
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EyeQ: Predictable Bandwidth Partitioning

at the Edge
Customer specifies
capacity of the Alice’s Switch Bob’s Switch
virtual NIC.

No traffic matrix. // \
(Hose I\/Iodel) u u
Provider: assures near ‘ B ‘ |

dedicated performance.

EyeQ is deployable
today at the Edge.
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EyeQ’s Key Contribution: Simplicity

e Observation

— Network Congestion predominantly occurs at the
Edge (Hypervisor / Top of Rack)

* Consequences: Simplicity

— Distributed, end-to-end bandwidth allocation
 Amenable to NIC-based implementation

— Network need not be tenant aware

* Implementation
— High speed in software at 10Gb/s
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Decentralized Scheduling
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Decentralized Scheduling
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Decentralized Scheduling
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Decentralized Scheduling
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Decentralized Scheduling
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Work Conserving Allocations

pare capacity

RX
Module
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Work Conserving Allocations
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Transmit/Receive Modules
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Per-destination rate limiters:

only if dest. is congested... bypass otherwise
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Transmit/Receive Modules

~N RCP: Rate feedback (R) every 10kB
— (no per-source state needed)

Rate limit. §
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Per-destination rate limiters:
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Timescales Matter

* Fast convergence important

— Switches only have few MB (milliseconds) worth
of buffering before they drop packets

 RCP’s worst-case convergence time

— N long lived flows competing for a single
bottleneck: few milliseconds.

— Usually few 100 microseconds.
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But what if the Core gets congested?

How? = Transient failures or ECMP collisions
Case 1: Mild network congestion
* Use ECN for graceful fallback

— Per receiver-VM max-min sharing

— Congestion detector: multiplicative decrease on
advertised rate on receiving ECN

Case 2: Severe network congestion (unlikely!)
 Multiplicative decrease (rate limiter timeout)
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Software Prototype

Linux Kernel Module (qdisc)
Windows Filter Driver (in VMSwitch)

* Non-intrusive: no changes to applications or
existing network stack. Works even with UDP.

 ~1700 lines of code 0
Linux Kernel Module is Open-Source ™
* Full system and documentation at Opéen source

nttp://jvimal.github.com/eyeq
 Fully functional version in Mininet to play with ©
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High speed software rate limiters

Single shared queue increases
lock contention

* High CPU overhead
* High packet latency
* Controlled burst

. il

Packets on the wire
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Parallel transmit path

@z} Split queue to per-cpu queues
 Lower CPU overhead

* Lower packet latency

* Fairness across CPU queues
* Higher, but bounded burst

1 D

-
Grab tokens*

A
Token filling ' ‘

Packets on the wire

clocked by packets
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CPU %

Rate Limiter Efficiency

Throughput
40 T T
1 htb
30 B EyeQ|]
20+
10 1
, (o

64 128 256 1440 \3200
Packet sizes

Single rate limiter at 5Gb/s.

HTB succumbs at 9Gb/s.
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Low lock contention due to
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Rate Limiter Efficiency
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Input rate to rate limiter limited by end-to-

end latency. .
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Macro Evaluation: Memcached Latency
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Macro Evaluation: Memcached Latency

Each server has
10Gb/s link

External Load: %\

144k SET req/sec A
N \
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12 Client Pool
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Macro Evaluation: Memcached Latency

Set 6kB objects

Each server has
10Gb/s link @2 Load: 2.3Gb/s/server
Q UDP bursty 5Gb/s
—

\
External Load: 0.5s to 1 server, chosen
144k SET req/sec T round robin. 0.5s sleep
| ) between bursts.
TN — 7
)
N _ —
J —
J
—
12 Client Pool 4 Server Pool
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Macro Evaluation: Memcached Latency

Egzihbseﬁvelz has Set 6kB objects
/5 In Load: 2.3Gb/s/server

; Baseline (Linux 3.4) 98us 666us 144kreq/s
Without Interference + EyeQ  100us 630us  144kreq/s
With Interference 4127us >10°s  144kreq/s
With Interference + EyeQ 102us 750us  144kreq/s

12 Client Pool 4 Server Pool
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Thank you!

EyeQ: An edge-based flow scheduler !

for the data center...
to partition bandwidth in a simple and

predictable way.

open source

http://jvimal.github.com/eyeq
jvimal@stanford.edu
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