EyeQ: Practical
Network Performance Isolation
at the Edge

Vimalkumar Jeyakumar

Mohammad Alizadeh .
Changhoon Kim g

Balaji Prabhakar i Windows Azure
. Albert Greenberg -

David Mazieres

Once upon a time...
2
sy

LY

A

4 Apr 2013 NSDI 2013

Once upon a time...

o
/ /\\
e ~
‘ \\‘ -~

4 Apr 2013 NSDI 2013 3

Once upon a time...

" 4 Apr 2013 NSDI 2013

4 Apr 2013 NSDI 2013

Performance Unpredictability

Graph (Wed Apr 03 08:05:40 EDT 2013 to Thu Apr 04 09:00:00 EDT 2013):

Noon

250 ms . rpos
i median
200 ms— zooms . /\ mean
i 90th
i 99th
150 ms—
100 ms—: \
1 " Mean,
50 ms— M
: 99" pcile Median
0 ns— E— — ,
6 AM Noon 6 PM Midnight
Wed 4/3 Thu 4/4

http://amistrongeryet.com/op detail.jsp?
op=gae_db readCachedHandles 1&hoursAgo=24

4 Apr 2013 NSDI 2013

ongestion Kills Predictability

Congestlon K|IIs Predlctablllty

« MEGA IMAGE

¥ : -
5" il e
X , B n_ol—l'—'-ﬁ I[x ' ,‘q
~ u @ f | (& :
> N Nt) ‘ ‘.5

P > N

Key Issue
Today’s transport (TCP/UDP) lacks
predlctablllty in sharmg bandW|dth

Status Quo is Insufficient

Status Quo is Insufficient
. TCP

— Cannot force all to use TCP or agree on one TCP
version!

— Sharing is per-flow: not built for predictability

e Performance Isolation with Per-tenant Queues

— State management complexity: >10k tenants,
configuring queues on all links is an operational
nightmare

— WFQ/DRR does not ensure admissibility

Status Quo is Insufficient
. TCP

— Cannot force all to use TCP or agree on one TCP
version!

— Sharing is per-flow: not built for predictability

e Performance Isolation with Per-tenant Queues

— State management complexity: >10k tenants,
configuring queues on all links is an operational
nightmare

— WFQ/DRR does not ensure admissibility

Where does Congestion Happen?

Shared

4

~ 10Gb/s pipe Server

N\

4

N\

Ideal network fabric
Y, (one switch) _

Where does Congestion Happen?

Shared

4

_

N\

4

J

_

N\

J

4 Apr 2013

10Gb/s pipe Server

Ideal network fabric
(one switch) _

e

Congestion Study on Windows Azure

r — — p

S

4 Apr 2013 NSDI 2013

Spine Layer

_

Leaf layer

Ry,

~ |

. Core
‘ ‘ Edge
99.9th percentile
by
oy ieation (%) Hottest storage cluster:
o ~ 1000x more drops at
40% -~ the Edge, than Core.
30% - —
20% - —
10% - - 16 of 17 clusters:
0% - | I .
Core Edge 0 drops in the Core.

Timescales: over 2 weeks,
99.9t" pcile = several minutes

4 Apr 2013 NSDI 2013 15

EyeQ: Predictable Bandwidth Partitioning

at the Edge
Customer specifies
capacity of the Alice’s Switch Bob’s Switch
virtual NIC.

No traffic matrix. // \
(Hose I\/Iodel) u u
Provider: assures near ‘ B ‘ |

dedicated performance.

EyeQ is deployable
today at the Edge.

4 Apr 2013 NSDI 2013 16

EyeQ’s Key Contribution: Simplicity

e Observation

— Network Congestion predominantly occurs at the
Edge (Hypervisor / Top of Rack)

* Consequences: Simplicity

— Distributed, end-to-end bandwidth allocation
 Amenable to NIC-based implementation

— Network need not be tenant aware

* Implementation
— High speed in software at 10Gb/s

4 Apr 2013 NSDI 2013

17

Decentralized Scheduling

[

4)
ZGb/sQ Shim
_ J
4)
ZGb/sQ Shim
_ J
4)
SGb/SQ Shim
_ J

EyeQ Shim Layer
In the trusted

Domain
(Hypervisor/NIC)

4 Apr 2013

NSDI 2013

(min) Rate

10Gb/s pipe Guarantees
-)
Q-

Shim

%

4)
\ Shim QSGb/s
\§ J

Decentralized Scheduling

~N

_

J

4 Apr 2013

NSDI 2013

10Gb/s pipe

(min) Rate
Guarantees

Le

J

4 N
QSGb/S

\ J

19

Decentralized Scheduling

4)
ZGb/s
g J
4)
ZGb/s
g J
4)
SGb/s
g J

4 Apr 2013

5Gb/s

5Gb/s

NSDI 2013

-

\
* 2Gb/s
RX
Module
SGb/s

J

4 N
QSGb/S

\ J

20

Decentralized Scheduling

4)

4 Apr 2013 NSDI 2013 21

Decentralized Scheduling

4)

4 Apr 2013 NSDI 2013 22

Work Conserving Allocations

pare capacity

RX
Module

4 Apr 2013

NSDI 2013

Work Conserving Allocations

4)
ZGb/s@ 2.5Gb/s
E— i
\§ J
_ 5Gb/s
-
5Gb/s

4 Apr 2013

NSDI 2013

QSGb/s

/

4)
QSGb/s

- J

Transmit/Receive Modules

~N

Rate limit. 1G b/c
E— O Congestion detectors \ \
/ @ 2Gb/s 2

) 1Gb/ N
I / 8Gb/s

J

) 4)

Rate limit. QSGb/S

J - J

=
ZGb/sQ— i — e _ L_";)
&=

Per-destination rate limiters:

only if dest. is congested... bypass otherwise
4 Apr 2013 NSDI 2013 25

Transmit/Receive Modules

~N RCP: Rate feedback (R) every 10kB
— (no per-source state needed)

Rate limit. §

))
y

Congestion detectors
2Gb/s
~N

J

~N

Rate limit. QSGb/S

J - J

g S
8Gb/s
. —é
ZGb/sQ— Rate limit. s &N @ ____

Per-destination rate limiters:

only if dest. is congested... bypass otherwise
4 Apr 2013 NSDI 2013 26

Timescales Matter

* Fast convergence important

— Switches only have few MB (milliseconds) worth
of buffering before they drop packets

 RCP’s worst-case convergence time

— N long lived flows competing for a single
bottleneck: few milliseconds.

— Usually few 100 microseconds.

4 Apr 2013 NSDI 2013 27

But what if the Core gets congested?

How? = Transient failures or ECMP collisions
Case 1: Mild network congestion
* Use ECN for graceful fallback

— Per receiver-VM max-min sharing

— Congestion detector: multiplicative decrease on
advertised rate on receiving ECN

Case 2: Severe network congestion (unlikely!)
 Multiplicative decrease (rate limiter timeout)

4 Apr 2013 NSDI 2013 28

Software Prototype

Linux Kernel Module (qdisc)
Windows Filter Driver (in VMSwitch)

* Non-intrusive: no changes to applications or
existing network stack. Works even with UDP.

 ~1700 lines of code 0
Linux Kernel Module is Open-Source ™
* Full system and documentation at Opéen source

nttp://jvimal.github.com/eyeq
 Fully functional version in Mininet to play with ©

4 Apr 2013 NSDI 2013 29

High speed software rate limiters

Single shared queue increases
lock contention

* High CPU overhead
* High packet latency
* Controlled burst

. il

Packets on the wire

4 Apr 2013 NSDI 2013 30

Parallel transmit path

@z} Split queue to per-cpu queues
 Lower CPU overhead

* Lower packet latency

* Fairness across CPU queues
* Higher, but bounded burst

1 D

-
Grab tokens*

A
Token filling ' ‘

Packets on the wire

clocked by packets

4 Apr 2013 NSDI 2013 31

CPU %

Rate Limiter Efficiency

Throughput
40 T T
1 htb
30 B EyeQ|]
20+
10 1
, (o

64 128 256 1440 \3200
Packet sizes

Single rate limiter at 5Gb/s.

HTB succumbs at 9Gb/s.

4 Apr 2013

Traffic |
Generator

5Gb/s

Low lock contention due to
fewer packets/sec and timer interrupts/sec.

NSDI 2013 32

Rate Limiter Efficiency

1.0
0.8
5Gb/s
50
Request S 0.4 |
(on multiple Response =
CPUSs)
0.2

Input rate to rate limiter limited by end-to-

end latency. .

4 Apr 2013 NSDI 2013

Latency

- = htb

-

I
[} -

b

VAN

-

!

Median latency !
reduced by 2x ,'

!
!
!

200

- e P -
400 600 800
usec

1B synchronous
request response loop.

100C

33

Macro Evaluation: Memcached Latency

Each server has (\
10Gb/s link T
e/
/%\
\d ©
—
— —
q I Py
\ e/ —
\ A
\ e/
\\ - A
\d © -
—
\d ©
—

12 Client Pool 4 Server Pool

4 Apr 2013 NSDI 2013 34

Macro Evaluation: Memcached Latency

Each server has
10Gb/s link

External Load: %\

144k SET req/sec A
N \
' \\
N\
——
12 Client Pool

4 Apr 2013

—

\J

Set 6kB objects
Load: 2.3Gb/s/server

4 Server Pool

NSDI 2013

35

Macro Evaluation: Memcached Latency

Set 6kB objects

Each server has
10Gb/s link @2 Load: 2.3Gb/s/server
Q UDP bursty 5Gb/s
—

\
External Load: 0.5s to 1 server, chosen
144k SET req/sec T round robin. 0.5s sleep
|) between bursts.
TN — 7
)
N _ —
J —
J
—
12 Client Pool 4 Server Pool

4 Apr 2013 NSDI 2013 36

Macro Evaluation: Memcached Latency

Egzihbseﬁvelz has Set 6kB objects
/5 In Load: 2.3Gb/s/server

; Baseline (Linux 3.4) 98us 666us 144kreq/s
Without Interference + EyeQ 100us 630us 144kreq/s
With Interference 4127us >10°s 144kreq/s
With Interference + EyeQ 102us 750us 144kreq/s

12 Client Pool 4 Server Pool

4 Apr 2013 NSDI 2013 37

Thank you!

EyeQ: An edge-based flow scheduler !

for the data center...
to partition bandwidth in a simple and

predictable way.

open source

http://jvimal.github.com/eyeq
jvimal@stanford.edu

4 Apr 2013 NSDI 2013

4 Apr 2013

NSDI 2013

39

