Enabling Fine-Grained Permissions for Augmented Reality Applications With Recognizers

Suman Jana^{1*}, David Molnar², Alexander Moshchuk², Alan Dunn^{1*}, Benjamin Livshits², Helen J. Wang², and Eyal Ofek²

¹University of Texas at Austin ²Microsoft Research * Work done during internship at Microsoft Research

USENIX Security 2013

Augmented Reality (AR) : the new frontier!

SoundWalk app on Layar AR browser http://www.layar.com/layers/clicmobiletestlayar/

Augmented Reality (AR) : the new frontier!

EA Sports Active 2 http://www.ea.com/ea-sports-active-2

Augmented Reality (AR) : the new frontier!

Google Glass navigation

Privacy concern: unrestricted access

7

Privacy concern: unrestricted access

tons of sensitive information!

Functionality concern: one app at a time

AR tour guide

AR navigator

can't run concurrently

Scalability concern: must scale to multiple concurrent applications

RECOGNIZERS: A NEW ABSTRACTION

Introducing recognizers

- A new platform abstraction to recognize real-world objects – generates events that apps can subscribe to
- Fine-grained control over detected objects
- Can enforce least privilege each app must obtain permissions to access each recognizer

Scalability with multiple recognizers

sample directed acyclic graph of recognizers

Benefits of explicit dataflow

How do recognizers help?

Concerns	Role of recognizers
Privacy concern	Recognizer based permissions allow enforcing least privilege

How do recognizers help?

Concerns	Role of recognizers
Privacy concern	Recognizer based permissions allow enforcing least privilege
	Recognizers allow computation sharing across apps
Scalability concern	Offload individual recognizers

Explaining recognizers: privacy goggles

 Visual way to explain information given by each recognizer to an application

Privacy goggles for skeleton recognizer

Recognizer-based AR architecture

IMPLEMENTATION

Example applications

Application	What it does	Recognizers
Hand cursor	Control cursor with hand movements	Skeleton
Facial movement detector	Visualize tracked faces	Face detector
Room Scanner	Find flat surfaces	3D Model, Depth

EVALUATION

Evaluation criteria

- Privacy: How many applications need access to raw video and sensor data?
- Scalability
 - Performance of concurrent applications
 - Performance of outsourced AR computation
- Usability
 - Is the information released less sensitive than raw data?
 - Do users understand privacy goggles?

Few apps need raw data

Only 4 recognizers cover ~90% of shipping Xbox apps

Recognizer	$\% ~ {f Apps}$
Skeleton	94.3%
Person Texture (PT)	25.3%
Voice Commands (VC)	3.44%
Hand Position (HP)	5.74%
Video Clip	3.4%
Picture Snap	1.1%
Voice Intensity	1.1%
Voice Modulation	1.1%
Speaker Recognition	1.1%
Sound Recognition	1.1%
Basketball Tracking	1.1%
Skeleton+PT+VC	82.75%
Skeleton+PT+VC+HP	89.65%

recognizers used by 87 shipping Xbox Applications

Released information less sensitive

10 surveys with 50 respondents each about recognizer output

Consider the two pictures below. Which picture contains "more sensitive" information?

86% of the users said the left one is more sensitive

Privacy goggles communicate

- 152 respondents
- 80% identified that the app could see body position
- 47% identified that the app could see hand positions

Sharing recognizers works!

Recognizer offloading

Recognizer offloading

Minimizing recognizer false positives

 Recognizers are not perfect (yet) - false positives can lead to information leakage

> AR platforms can apply simple heuristics like combining multiple recognizers to decrease false positives

OpenCV face recognizer

OpenCV face recognizer & Kinect depth filter

Summary

- New AR paradigm needs new platform abstractions
- Recognizers
 - Help in enforcing least privilege
 - Allow sharing of computation across apps
 - Allow efficient offloading of heavyweight computation
 - False positives in recognizers can be dealt using heuristics at the platform level
- Privacy goggles visual permission management

Thanks!

