@@
{MELIORA J7

ROCHESTER r—

ElCached: Elastic Multi-Level
Key-Value Cache

Rahman Lavaee,
Stephen Choi, Yang-Suk Kee,
Chen Ding

November 15t, Savannah, GA

—

-
Web App =

Backend database server

gjzm&% ooo —

-
Web App =

Backend database server

Web Caching

Memcached nodes

S

-
N
—

Resource Provisioning for Memcached

Resource Provisioning for Memcached

* The service provider must wisely allocate the resource to guarantee
each tenant’s SLA, while minimizing TCO.

At
-~
PR R S
4
4y Vw4 | T~ --"
| IR |
;\5_ -
i e =T
|
I

™

Elastic Resource Provisioning

e Optimal resource provisioning requires elasticity
» capability to adapt to workload changes by dynamic resource provisioning.

Multitenant Resource Provisioning

* The problem becomes more complex as
* more tenants are added to the system.
* more web caching layers are used.

MICached [HotCloud’16]

‘ Multi-level cache manager

* A multi-level key-value caching system.

4

4

e L1: DRAM-based Memcached MC-based Llc;;he

e L2: exclusive NAND-flash-based key-value cache (SSD). ||| i, [¢=

list

Eviction
logic

Eviction
=)

logic

Key-value L2 Cache
LRU
list

%

DRAM

2

SSD

* MICached implements direct key-to-PBA mappings on SSD.

* Independent resource provisioning

Micached

* In this work, we extend MICached by adding the elasticity feature.

Independent Resource Provisioning in
MICachec

* MICached implements direct key-to-PBA mappings on SSD.

* This removes the need for storing redundant key-to-LBA mapping
tables in memory

KV Cache Engine
| Key-LBA Mapping J

Host ‘ '
OS File System]	KV Cache API	
8lock I/O I/F (PCle,SATA, ...)	l [KVI/OI/F (PCle,SATA,..)	
Host I/F (PCle, SAS, ..)		Host I/F (PCle, SAS, ..)
FTL FTL		
Storage [LBA-PBA Mapping [Key-PBA Mapplng		
Device		
Flash Interface		Flash Interface
(NAND Flash) (NAND Flash)

(a) SSD as a block device (b) New key-value cache device

Performance Model

Latency Model

Lat = lm + lS' Mm + ldb'MS

l,, Latency of Memcached server M,, Miss rate of Memcached

[Lat f SSD
S USRS M, Miss rate of SSD

l;p Latency of backend DB server

Cost Model

Cost = C;. Dy + Cs. Ds

Cym Size of DRAM Pm Price per unit of DRAM

cs Size of SSD ps Price per unit of SSD

Latency Based on Miss Ratio Curve

* The key to optimal resource provisioning is to find the miss ratio

curve (MRC).
\ Lat = L, + l,.mr(cy) + lgp. mr(cs)

Capacity

Miss Ratio

How to compute the MRC?

Reuse Distance

* We use the reuse distance theory to compute the miss ratio curve.

* Reuse distance is the number of distinct memory locations accessed
between two consecutive uses of the same memory location.

a b Jc |d [b Ja |c
@ o0 oo oo 3 4 4

16

Reuse Distance Histogram

* The reuse distance information is best represented by the reuse
distance histogram, which shows the frequency for every reuse
distance.

* The MRC can be computed from this histogram.

a b _Jc |d b Ja Jc
©© o0 oo oo 3 4 4

N
I

(@) —
~ o
(6)] o
| | |

w
| |

frequency
N
v
miss ratio
o
(@)]
o

o
\S)
o

0.00 -

(@) —
| |

reuse distance cache size

17

Reuse Distance Computation

* Olken tree [Olken 1981]

* Approximate reuse distance [Ding+ 2001]
* Footprint estimation [Xiang+ 2011]

e Stack counters [Wires+ 2014]

Reuse Distance Computation

P

e Olken tree [Olken 1981] *i/

* Approximate reuse distance [Ding+ 2001]

* Footprint estimation [Xiang+ 2011]
e Stack counters [Wires+ 2014]

tree node

(time ,weight)

(7.7)

(4,3)

T
(1,1)

6,1) [[(8,1)

Reuse Distance
for Memcached

* Memcached distributes
items among different
slab classes, according
to their sizes.

e Slab allocation is done
during the cold start.

‘ "big items"
“small items" "medium items" <>

o l

slab class 1 slab class 2 slab class 3

rDQ\ 5 N —
=551 (L
OO ()

-
oo LD L

1024 byte page 1024 byte page 1024 byte page
96 byte chunk size 288 byte chunk size 1024 byte chunk size
10 chunks / page 3 chunks / page 1 chunk / page

1 megabyte page pool (-m 1)
1024 byte pages (- 1k)

LRU Replacement in Memcached

* Once the Memcached system reaches its memory
limit, LRU replacement is done separately for every
slab class.

——
—

Slab Class 1

Slab Class 2 :H:H: N

Slab-Aware Reuse Distance Profiling

* Rather than analyzing the whole Memcached
system in a single reuse distance model, we model
each slab class separately.

* We compose the MRCs from different slab classes.

LRU Head LRU Tail

Slab Class 1 :H:m: o M
Slab Class 2 _' _' :
PR

22

How To Solve
Resource Provisioning?

Resource Provisioning as a Linear
°rogram

* The resource provisioning problem can be
described in one of the two ways.
* Minimize Cost such that Lat < SLA.
* Minimize Lat such that Cost < TCO.

Resource Provisioning as a Linear
°rogram

* The resource provisioning problem can be
described in one of the two ways.
* Minimize Cost such that Lat < SLA. Lt e P e 9
* Minimize Lat such that Cost < TCO.

Resource Provisioning as a Linear
°rogram

* The resource provisioning problem can be
described in one of the two ways.
* Minimize Cost such that Lat < SLA. [
* Minimize Lat such that Cost < TCO.

 Cost is already linear in terms of DRAM/SSD

capacities.l

26

Resource Provisioning as a Linear
°rogram

* The resource provisioning problem can be
described in one of the two ways.

* Minimize Cost such that Lat < SLA. Dt e P oo 9
e Minimize Lat such that Cost < TCO.

 Cost is already linear in terms of DRAM/SSD

capacities.l

* Latency is linear only in terms of the miss ratio

function.x

27

Resource Provisioning as a Linear
°rogram

 We observe that the miss ratio curves in our
workloads are always convex.

* We formulate the miss ratio curve using linear
constraints.

oljeJ ssiw

capacity

Evaluation

* We compare ElCached against a proportional approach that fixes the
ratio between DRAM and SSD capacities to 1:4 (Pareto principle).

Evaluation

* We compare ElCached against a proportional approach that fixes the
ratio between DRAM and SSD capacities to 1:4 (Pareto principle).

cost ($/GB) latency
DRAM ‘ 10 Memcached | 100us
SSD | 0.68 KVD 200us
’ Back-end DB | 10ms

Evaluation

* We compare ElCached against a proportional approach that fixes the
ratio between DRAM and SSD capacities to 1:4 (Pareto principle).

cost ($/GB) latency
DRAM ‘ 10 Memcached | 100us
SSD | 0.68 KVD 200us
’ Back-end DB | 10ms

* Workloads:
e Zipfian key distribution with « = 1.15
* Exponential key distribution with A = 107°
* Both workloads issue 800 million requests to a range of 4 billion keys.

Miss Ratio Prediction Accuracy

* Mean relative error on Zipfian workload: 4%

Predicted 4 Measured

A o

I I I I
64 256 1024 4096 16384
Cache Size (MB)

32

Experiment 1.
Elastic Resource Provisioning

* For each workload

e For each latency limit, we find the minimum cost resource
provisioning.

Experiment 1.
Elastic Resource Provisioning

* For each workload

* For each latency limit, we find the minimum cost resource
provisioning.

e Elastic saves cost by around 60% for both workloads.

Relative Cost Cost (Normalized)

(&)} o
|

o

b

o O O
>~ OO 00 O
| I

|
0.7

Zipfian

| |
0.8 0.9 1.0
Latency(ms)

Prop. -+ Elastic

Relative Cost Cost (Normalized)

Exponential

—
o
I

(&)
1

K
N
-

oo
| I |

© o o
A O @
| I |

1 1
0.2 03 04 0.5
Latency(ms)

Prop. = Elastic

Experiment 2:

Multitenant Resource Provisioning

* First, we use the proportional scheme to partition a fixed 3GB
memory between the two tenants.

8.00 -
(2}
—2.00 -
FC_-’ 1.00 -
(av)
-1 0.50 -

0.25 -

Tenant 1 -+ Tenant 2

Proportional

T1 T2
5 DRAM | 1.63 | 1.37
’*g Lat. 0.71 | 0.20
N Cost | 7.20 | 5.41
:
L]
=

0 i 1632 3
DRAM Partition for T1 (GB)

Experiment 2:
Multitenant Resource Provisioning

* Then, we use ElCached to find the latency-optimal DRAM/SSD

partitioning.
Elastic
T1 T2
DRAM | 046 | 1.17
Lat. 0.67 | 0.20
Cost 5.30 | 4.01

8.00 -
(2}
—2.00 -

S 1.00 -

)

©
—0.50 -

0.25 -

1
0

Tenant 1 -+ Tenant 2

memory partition

i 163 2
DRAM Partition for T1 (GB)

1
3

Proportional
T1 T2
DRAM | 1.63 | 1.37
Lat. 0.71 | 0.20
Cost 7.20 | 541

36

Experiment 2:
Multitenant Resource Provisioning

* Elasticity improves
* tenant 1’s latency by 5%,
* both tenants’ cost by 26%, and
 total memory consumption by 46%.

Summary

* EICached is a multi-level key-value caching system.

* It uses a reuse distance profiler to estimate the miss rate curve across
all capacity limits.

* It reduces the total cost by up to around 60% compared to a
proportional scheme.

* Multi-tenant experiment indicates that we can improve latency, cost,
and total DRAM usage, compared to the proportional scheme.

Thank You

Any Questions?

