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Resource Provisioning for Memcached




Resource Provisioning for Memcached

* The service provider must wisely allocate the resource to guarantee
each tenant’s SLA, while minimizing TCO.
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Elastic Resource Provisioning

e Optimal resource provisioning requires elasticity
» capability to adapt to workload changes by dynamic resource provisioning.




Multitenant Resource Provisioning

* The problem becomes more complex as
* more tenants are added to the system.
* more web caching layers are used.




MICached [HotCloud’16]

‘ Multi-level cache manager

* A multi-level key-value caching system.
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e L1: DRAM-based Memcached MC-based Llc;;he

e L2: exclusive NAND-flash-based key-value cache (SSD). ||| i, [¢=
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* MICached implements direct key-to-PBA mappings on SSD.

* Independent resource provisioning

Micached

* In this work, we extend MICached by adding the elasticity feature.




Independent Resource Provisioning in
MICachec

* MICached implements direct key-to-PBA mappings on SSD.

* This removes the need for storing redundant key-to-LBA mapping
tables in memory

KV Cache Engine
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(a) SSD as a block device (b) New key-value cache device



Performance Model



Latency Model

Lat = lm + lS' Mm + ldb'MS

l,, Latency of Memcached server M,, Miss rate of Memcached

[ Lat f SSD
S USRS M,  Miss rate of SSD

l;p Latency of backend DB server



Cost Model

Cost = C;. Dy + Cs. Ds

Cym Size of DRAM Pm  Price per unit of DRAM

cs  Size of SSD ps  Price per unit of SSD



Latency Based on Miss Ratio Curve

* The key to optimal resource provisioning is to find the miss ratio

curve (MRC).
\ Lat = L, + l,.mr(cy) + lgp. mr(cs)

Capacity

Miss Ratio



How to compute the MRC?



Reuse Distance

* We use the reuse distance theory to compute the miss ratio curve.

* Reuse distance is the number of distinct memory locations accessed
between two consecutive uses of the same memory location.

a b Jc |d [b Ja |c
@ o0 oo oo 3 4 4

16



Reuse Distance Histogram

* The reuse distance information is best represented by the reuse
distance histogram, which shows the frequency for every reuse
distance.

* The MRC can be computed from this histogram.

a b _Jc |d b Ja Jc
©© o0 oo oo 3 4 4

N
I

(@) —
~ o
(6)] o
| | |

w
| |

frequency
N
v
miss ratio
o
(@) ]
o

o
\S)
o

0.00 -

(@) —
| |

reuse distance cache size

17



Reuse Distance Computation

* Olken tree [Olken 1981]

* Approximate reuse distance [Ding+ 2001]
* Footprint estimation [Xiang+ 2011]

e Stack counters [Wires+ 2014]



Reuse Distance Computation

P

e Olken tree [Olken 1981] *i/

* Approximate reuse distance [Ding+ 2001]

* Footprint estimation [Xiang+ 2011]
e Stack counters [Wires+ 2014]
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Reuse Distance
for Memcached

* Memcached distributes
items among different
slab classes, according
to their sizes.

e Slab allocation is done
during the cold start.

‘ "big items"
“small items" "medium items" <>
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slab class 1 slab class 2 slab class 3
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1024 byte page 1024 byte page 1024 byte page
96 byte chunk size 288 byte chunk size 1024 byte chunk size
10 chunks / page 3 chunks / page 1 chunk / page

1 megabyte page pool (-m 1)
1024 byte pages (- 1k)



LRU Replacement in Memcached

* Once the Memcached system reaches its memory
limit, LRU replacement is done separately for every
slab class.
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Slab-Aware Reuse Distance Profiling

* Rather than analyzing the whole Memcached
system in a single reuse distance model, we model
each slab class separately.

* We compose the MRCs from different slab classes.

LRU Head LRU Tail

Slab Class 1 :H:m: o M
Slab Class 2 _' _' :
PR
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How To Solve
Resource Provisioning?



Resource Provisioning as a Linear
°rogram

* The resource provisioning problem can be
described in one of the two ways.
* Minimize Cost such that Lat < SLA.
* Minimize Lat such that Cost < TCO.
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Resource Provisioning as a Linear
°rogram

* The resource provisioning problem can be
described in one of the two ways.
* Minimize Cost such that Lat < SLA. [
* Minimize Lat such that Cost < TCO.

 Cost is already linear in terms of DRAM/SSD

capacities.l
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Resource Provisioning as a Linear
°rogram

* The resource provisioning problem can be
described in one of the two ways.

* Minimize Cost such that Lat < SLA. Dt e P oo 9
e Minimize Lat such that Cost < TCO.

 Cost is already linear in terms of DRAM/SSD

capacities.l

* Latency is linear only in terms of the miss ratio

function.x
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Resource Provisioning as a Linear
°rogram

 We observe that the miss ratio curves in our
workloads are always convex.

* We formulate the miss ratio curve using linear
constraints.
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Evaluation

* We compare ElCached against a proportional approach that fixes the
ratio between DRAM and SSD capacities to 1:4 (Pareto principle).
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’ Back-end DB | 10ms




Evaluation

* We compare ElCached against a proportional approach that fixes the
ratio between DRAM and SSD capacities to 1:4 (Pareto principle).

cost ($/GB) latency
DRAM ‘ 10 Memcached | 100us
SSD | 0.68 KVD 200us
’ Back-end DB | 10ms

* Workloads:
e Zipfian key distribution with « = 1.15
* Exponential key distribution with A = 107°
* Both workloads issue 800 million requests to a range of 4 billion keys.



Miss Ratio Prediction Accuracy

* Mean relative error on Zipfian workload: 4%

Predicted 4 Measured

A o
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64 256 1024 4096 16384
Cache Size (MB)
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Experiment 1.
Elastic Resource Provisioning

* For each workload

e For each latency limit, we find the minimum cost resource
provisioning.



Experiment 1.
Elastic Resource Provisioning

* For each workload

* For each latency limit, we find the minimum cost resource
provisioning.

e Elastic saves cost by around 60% for both workloads.
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Experiment 2:

Multitenant Resource Provisioning

* First, we use the proportional scheme to partition a fixed 3GB
memory between the two tenants.
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Experiment 2:
Multitenant Resource Provisioning

* Then, we use ElCached to find the latency-optimal DRAM/SSD

partitioning.
Elastic
T1 T2
DRAM | 046 | 1.17
Lat. 0.67 | 0.20
Cost 5.30 | 4.01
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Proportional
T1 T2
DRAM | 1.63 | 1.37
Lat. 0.71 | 0.20
Cost 7.20 | 541
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Experiment 2:
Multitenant Resource Provisioning

* Elasticity improves
* tenant 1’s latency by 5%,
* both tenants’ cost by 26%, and
 total memory consumption by 46%.



Summary

* EICached is a multi-level key-value caching system.

* It uses a reuse distance profiler to estimate the miss rate curve across
all capacity limits.

* It reduces the total cost by up to around 60% compared to a
proportional scheme.

* Multi-tenant experiment indicates that we can improve latency, cost,
and total DRAM usage, compared to the proportional scheme.



Thank You

Any Questions?



