
Jinho Hwang and Timothy Wood
George Washington University

§  Two orders of magnitude more reads than writes
§  Solution: Deploy memcached hosts to handle the read

capacity

Background: Memory Caching

6/26/13 The George Washington University 2

Web Server

DB Memcache

DB DB

1. HTTP Request6. HTTP Response

2. Get(key)3. Miss(key)

4. DB Lookup(key)

5. Data
6. (key, data)

6/26/13 The George Washington University 3

§  Databases are hard to scale… Memcached is easy
o  Facebook has 10,000+ memcached servers

§  Partition data and divide key space among all nodes

o  Simple data model. Stupid nodes.

§  Web application must track where each object is stored
o  Or use a proxy like moxi

Memcached at Scale

Clients Web Servers

moxi

DB Memcached
nodes

…

6/26/13 The George Washington University 4

§  Random placement…
§  Skewed popularity distributions…

Scales easily, but loads are imbalanced

Load on Wikipedia’s memcached servers

§  Consistent hashing does not evenly load data across
memory cache servers
o  Variation in number of keys assigned to each server
o  Key popularity is skewed and changes over time

§  Solution: dynamically balance load according to the
performance

Motivation

6/26/13 The George Washington University 5

0 50 100 150 200 250 300

H
as

h
Sp

ac
e

(0
 -

 2
32

)

Time (5 hours)

Unpopular region (65%)

Popular region (35%)

Based on Wikipedia
2008 database dump
and access trace

6/26/13 The George Washington University 6

§  A hash space allocation scheme
o  allows for targeted load shifting between unbalanced

servers
§  Adaptive partitioning of the cache’s hash space

o  automatically meet hit rate and server utilization goals
§  An automated replica management system

o  adds or removes cache replicas based on overall cache
performance

Contributions

6/26/13 The George Washington University 7

§  Background and Motivation

§  Initial Hash Space Partitioning

§  Dynamic Adaptation

§  Evaluation

§  Conclusions

Outline

6/26/13 The George Washington University 8

§  Simple Hashing
o  hash(key) % [# of server]
o  Once assigned, never changes
o  If node added or removed, all objects

need to be rearranged

§  Consistent hashing
o  Treat hash space as ring with nodes

assigned to each region
o  Node addition / removal only affects

adjacent nodes
o  Used in P2P systems and by popular

memcached proxy system Moxi

Background: Hash Space Allocation

N1

N2

N3

N4

N2

N3

N1

N4

Key Hash Space
2^32

Key

belong to

Memory
Server

Memory
Server

Memory
Server

Load
Balancer server[key % 3]

§  To enable efficient repartitioning of the hash space:
o  Every node is adjacent to every other node
o  This allows a simple transfer of load between two nodes by

adjusting just one boundary

§  Required number of duplicate nodes =
§  Total number of nodes =
§  Multiply number of virtual nodes

Initial Assignment

6/26/13 The George Washington University 9

N1 N2 N3 N4 N5 N1 N3 N5 N2
N4

N3N1N4N2N5N4N1N5N3
N2

§  Two factors to measure server performance:
o  Hit rate: enough memory for popular data
o  Usage ratio: server processing

§  Minimize {cost = hit rate + usage ratio}

§  Scheduling decision:
o  Find the most different two memory servers
o  Find the most different two adjacent virtual nodes

§  Size of hash space moved at each scheduling decision
o  Determine the speed of adaptability, but more fluctuation
o  Using ratio value:

Dynamic Hash Space Scheduling

6/26/13 The George Washington University 10

§  Balance out the requests across replicas that overall
performance improves

§  Highly overloaded server(s) sustaining a certain period of
time should be backed by new server(s)

§  Find the most costly memory server, and its virtual node

§  Find the least costly memory server, and its virtual node

Node Addition / Removal

6/26/13 The George Washington University 11

sksi
Migrate

new node
sj

Node Addition

Set

removed
sksi sjsi

Set

moved

Node Removal

6/26/13 The George Washington University 12

§  Background and Motivation

§  Initial Hash Space Partitioning

§  Dynamic Adaptation

§  Evaluation

§  Conclusions

Outline

§  Lab setup
o  Five experimental servers(4× Intel Xeon X3450 2.67GHz

processor, 16GB, and a 500GB 7200RPM hard drive)
§  Amazon setup

o  15 medium instances

§  All workloads are from Wikipedia data and access traces

Experimental Setup

6/26/13 The George Washington University 13

Clients

memcd
memcd
memcd memcd

memcd
memcd

Memory
Pool50 1 2 3 4

1

0

0.5

Proxy
Elastic Decision (+/-)

memcd

web

§  5 memory servers used (total 500 virtual nodes)
o  For consistent hashing, 100 virtual nodes per each server
o  For our scheme, the initial set is 5 x 4 = 20, and 25 virtual

nodes per node

§  The largest gap between the biggest hash size and the
smallest hash size is 381,114,554 (≅ 20% more)

Initial Hash Space Assignment

6/26/13 The George Washington University 14

Se
rv

er
 N

um
be

r

 1
 2
 3
 4
 5 Consistent

Se
rv

er
 N

um
be

r

Hash Space (0 - 232)

 1
 2
 3
 4
 5 Adaptive

 0
 200
 400
 600
 800

 1000
 1200

1 2 3 4 5

H
as

h
Sp

ac
e

Si
ze

 (x
10

6)
Server Number

Consistent
Adaptive

Dynamic Partitioning

6/26/13 The George Washington University 15

H
as

h
Sp

ac
e

(0
 -

232
)

Time (5 hours)

Host 1
Host 2
Host 3

0 50 100 150 200 250 300

33.3 % Host 1 51.6 %

33.3 % Host 2 31.4 %

33.3 % Host 3 16.9 %

§  α = 1.0 (only hit rate)

§  α = 0 (only usage ratio)

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

H
it

Ra
te

Time (5 hours)

Host 1
Host 2
Host 3

 0
 500

 1000
 1500
 2000
 2500
 3000
 3500
 4000
 4500

0 50 100 150 200 250 300

of

 R
eq

ue
sts

 (p
er

 m
in

)
Time (5 hours)

Host 1
Host 2
Host 3

 0

 500

 1000

 1500

 2000

 2500

0 50 100 150 200 250 300

of

 R
eq

ue
sts

 (p
er

 m
in

)

Time (5 hours)

Host 1
Host 2
Host 3

H
as

h
Sp

ac
e

(0
 -

232
)

Time (5 hours)

Host 1
Host 2
Host 3

0 50 100 150 200 250 300

33.3 % Host 1 22.9 %

33.3 % Host 2 40.9 %

33.3 % Host 3 36.0 %

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

H
it

Ra
te

Time (5 hours)

Host 1
Host 2
Host 3

§  When α = 0.5, β = 0.01

α Behavior

6/26/13 The George Washington University 16

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

H
it

Ra
te

Time (5 hours)

Host 1
Host 2
Host 3 0

 1

 2

 3

 4

0 50 100 150 200 250 300

of

 R
eq

s p
er

 m
in

(x
10

3)

Time (5 hours)

Host 1
Host 2
Host 3

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

Co
st

Time (5 hours)

Host 1
Host 2
Host 3

H
as

h
Sp

ac
e

(0
 -

232
)

Time (5 hours)

Host 1
Host 2
Host 3

0 50 100 150 200 250 300

33.3 % Host 1 27.6 %

33.3 % Host 2 35.2 %

33.3 % Host 3 37.0 %

6/26/13 The George Washington University 17

§  Addition
§  A new node takes

reduces load on the
overloaded server

Node Addition / Removal

 0

 1

 2

 3

 4

0 50 100 150 200

of

 R
eq

s
pe

r m
in

(x
10

3)

Time (3 hours)

Host added

H
as

h
Sp

ac
e

(0
 -

232
)

Time (3 hours)
0 50 100 150 200

33.3 %

33.3 %

33.3 %

10.7 %

26.7 %

17.2 %

45.3 %

Host added

 0

 1

 2

0 50 100 150 200

of

 R
eq

s
pe

r m
in

(x
10

3)

Time (3 hours)

Host removed H
as

h
Sp

ac
e

(0
 -

232
)

Time (3 hours)
0 50 100 150 200

20 %

20 %

20 %

20 %

20 %

25.1 %

24.7 %

27.8 %

22.2 %

Host removed §  Removal
§  Removing an

underloaded server
gives cost benefits
while maintaining
performance

§  Amount ratio of hash space movement
§  Determine the speed of adaptability
§  Use β = 0.01 (1%) to show the behavior

β Behavior

6/26/13 The George Washington University 18

0.0

0.5

1.0

1.5

2.0

2.5

0 50 100 150 200 250 300

of

 R
eq

s p
er

 m
in

(x
10

3)

Time (5 hours)

Host 1
Host 2
Host 3

 0

 1

 2

 3

 4

 5

 6

0 50 100 150 200 250 300M
ov

ed
 H

as
h

Sp
ac

e
Si

ze
 (x

 1
06)

Time (5 hours)

` = 0.01

Traffic changes over 5 hours Moved hash space per each scheduling

§  Dynamically add / remove server(s) depending on amount
of load intensity

§  Watch each server for a period of time (5 min) to check
high load sustainability

§  To maximize variation, α = 1 (hit rate only)
§  5 Wikipedia traffic generators used

Scaling Up / Down

6/26/13 The George Washington University 19

 0

 20

 40

 60

 80

 100

 120

 140

 160

 3

 4

 5

 6

 7

 8

 9

of

 R
eq

s P
er

 M
in

 (x
10

3)

of

 S
er

ve
rs

Time (5 hours)

§  Wikipedia workload achieves better response time as hit
rate increases (≈ 45% increase)

§  But the number of servers used increases as well
§  As recommendation, the combination of hit rate and

usage rate (α = 0.5) is a good administrative choice

QoE Improvement

6/26/13 The George Washington University 20

 0

 20

 40

 60

 80

 100

 120

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

A
vg

. R
es

po
ns

e
Ti

m
e

(m
s)

_ Value [0.0, 1.0]

Ketama

Hit rate Usage rate

 0
 2
 4
 6
 8

 10
 12
 14
 16

.0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0

of

 U
se

d
M

em
or

y
Se

rv
er

s

_ Value [0.0, 1.0]

Ketama

6/26/13 The George Washington University 21

§  [Stoica, ToN 03] Chord Peer-to-Peer architecture

§  [Nishtala, NSDI 13] Scaling Memcached at Facebook

§  [Zhu, HotCloud 12] Shrinking memcached to save $$

§  Ideas may apply to many other key-value based storage
systems: couchebase, redis, SILT, FAWN, etc

Related Work

§  Summary
o  A hash space allocation scheme

Carefully place nodes to ensure adjacency

o  Adaptive partitioning of the cache’s hash space
Maximize hit rate and minimize difference in utilization rate

o  An automated replica management system
Detect sustained overload and add or remove nodes

§  Future works
o  Automatic α value adjustment to minimize response time
o  Targeted management of hot objects without impacting

application performance

Conclusion

6/26/13 The George Washington University 22

