10th International Conference on Autonomic Computing
THE GEORGE e
= JUNE 26-—28, 2013
WASHINGTON . P . SAN JOSE, CA
UNIVERSITY & - [&' Sponsored by USENIX usenix
”_ﬁ - ™ el p ‘ ‘

in cooperation with ACM SIGARCH

WASHINGTON, DC

Adaptive Performance-Aware Distributed
Memory Caching

Jinho Hwang and Timothy Wood
George Washington University

Background: Memory Caching

= Two orders of magnitude more reads than writes

= Solution: Deploy memcached hosts to handle the read
capacity

6. HTTP ResponseT 11- HTTP Request

Web Server 6. (key, data)

5. Data
2. Get(key)

3. Miss(key)

4. DB Lookup(key)

6/26/13 The George Washington University 2

Memcached at Scale

= Databases are hard to scale... Memcached is easy
o Facebook has 10,000+ memcached servers

» Partition data and divide key space among all nodes
o Simple data model. Stupid nodes.

= Web application must track where each object is stored
o Or use a proxy like moxi

Clients

Web Servers

Memcached
nodes

6/26/13 The George Washington University 3

Scales easily, but loads are imbalanced

= Random placement...

= Skewed popularity distributions...

mcl001.egiad.wmnet

mcl001

rate

mc_cmd_get_
3 G
w (o]
= =

mcl002.eqiad.wmnet

mcl002

rate

mc_cmd_get_
voo@
w o
= =

130 I80L 1

Load on Wikipedia’s memcached servers

mc1003.eqiad.wmnet

mcl003

rate

mc_cmd_get_
o N
(o] (o]
= =

mcl004.egiad.wmnet

rate

mc_cmd_get_
» w
o o
= =

mcl004

4.0 k
Mon Wed

Fri

Mon Wed

Fri

Mon Wed

Wed

4.0k = 5.0 k : 5.0 k = =
Mon Wed Fri Mon Wed Fri m Mon Wed Fri Mon Wed Fri m
mcl005.egiad.wmnet mcl006.eglad.wmnet mcl007.egiad.wmnet mcl008.eglad.wmnet
v mc 1005 e mc1006 2w mc1007 e mc1008 2
® | R 10k | R :
g 5.0 k | |E 7.0 k g 7.0 k | |8 6.0 k =
+ + + +
7] <4 w 4w =1 =
o 45k 5 ® 60k 5 ® 65k 5| ® sok &
o o o o
5) |8 Al |5) |8 g
| 4.0 k . = | 5.0k " = | 6.0 k . = | 4.0 k "
v Mon Wed Fri m o Mon Wed Fri m U Mon Wed Fri m Y Mon Wed Fri m
mcl003.egiad.wmnet mcl010.egiad.wmnet mclOll.egiad.wmnet mcl0l2.egiad.wmnet
v mc 1009 2| |w mcl0l0 2l | mcl0ll 2|l |w mclol2 z
T EIRE EIE SR 2
g 5.0 k al 5.0 k 2l |E 5.0 k 2 |E 5.0 k =
+ + + +
v i v 1 v 1 w i
U'I 4.5 k @ u‘l @ U'I 4.5 k @ u'[4.5 k @
- - 4.0k - -
b] u) Wi ul it a| | G 1
| 4.0 k . = | " = | 4.0 k . = | 4.0 k " =
U Mon Wed Fri m U Mon Wed Fri m U Mon Wed Fri m V] Mon Wed Fri m
E £ E 5
mcl013.eglad.wmnet mcl014.eglad.wmnet mcl015.eglad.wmnet mcl016.eglad.wmnet
v mcl013 =1 mcl0l4 2l o mc1015 2l | o mcl016 2
® 2l ® 2| 1% =l ® 2
£ 6.0 k 2 5.0 k 2 |E 5.0 k £ 5.0 k ¢
+ + + +
v 1 v 1 W 1 W 1
o 5.0k gl |9 gl | o gl 9 45k -
- - 4.0k - 4.0k e
S 91 | S a| | S a1 | S 2
I : [. I : 1 4.0k . =
v v v v
E E B E

6/26/13

The George Washington University

Motivation

» Consistent hashing does not evenly load data across
memory cache servers

o Variation in number of keys assigned to each server
o Key popularity is skewed and changes over time

Unpopular region (65%)

++ ‘*M' +
+ 5 &
Folbmmesiidngmm et e St a b |
- ot LA e ers Sk SRS : 0
s, r i, T AR e B BT S oo Popular region (35%)
: PTNER ¥ I T S IR Tt R
t¢“ ;;;** ﬂ:‘ 3‘%3‘"* P $3‘§, ¢%¢ »*
G+ mt “;,.,1 A TN e 4 ¢ et TR ol
B s
.

Based on Wikipedia
2008 database dump

and access trace

Hash space © -_ 232)

g Jw;w fgww &*W»”f*"w y«;;}w: i i

mmww oo v wmm
0 50 100 150 200 250 300
Time (5 hours)

= Solution: dynamically balance load according to the
performance

6/26/13 The George Washington University

Contributions

= A hash space allocation scheme

o allows for targeted load shifting between unbalanced
servers

» Adaptive partitioning of the cache’s hash space
o automatically meet hit rate and server utilization goals

= An automated replica management system

o adds or removes cache replicas based on overall cache
performance

6/26/13 The George Washington University 6

Outline

= Background and Motivation

» |nitial Hash Space Partitioning
= Dynamic Adaptation

= Evaluation

= Conclusions

6/26/13 The George Washington University

Background: Hash Space Allocation

= Simple Hashing Memory
o hash(key) % [# of server]
o Once assigned, never changes
o If node added or removed, all objects

need to be rearranged server[key % 3]

» Consistent hashing

Memory Memory

Server Server Server

o Treat hash space as ring with nodes ,°’ 3,
assigned to each region ,(\@i\vbelong .

o Node addition / removal only affects Key Hash Space 'fe
adjacent nodes ' 232 '

o Used in P2P systems and by popular s‘\ %o
memcached proxy system Moxi * ‘

CeN3e ®

6/26/13 The George Washington University 8

Initial Assignment

» To enable efficient repartitioning of the hash space:
o Every node is adjacent to every other node

o This allows a simple transfer of load between two nodes by
adjusting just one boundary

n
= Required number of duplicate nodes = v > T2 =np—1,
= Total number of nodes = ng X (ng — 1) "0
= Multiply number of virtual nodes
— —
Ng— N2 —N3—N4 —N5 —N1 —N3—N5—N2—

()

N2 N3
~— N3 — N5 —N1—N4 —N5—N2—N4 —N1—
- -

6/26/13 The George Washington University

Dynamic Hash Space Scheduling

= Two factors to measure server performance:
o Hit rate: enough memory for popular data
o Usage ratio: server processing

= Minimize {cost = hit rate + usage ratio}

= Scheduling decision: a € [0,1]
o Find the most different two memory servers
o Find the most different two adjacent virtual nodes

= Size of hash space moved at each scheduling decision
o Determine the speed of adaptability, but more fluctuation
o Using ratio value: B € (0,1]

6/26/13 The George Washington University

10

Node Addition / Removal

= Balance out the requests across replicas that overall
performance improves

» Highly overloaded server(s) sustaining a certain period of
time should be backed by new server(s)

* Find the most costly memory server, and its virtual node

Migrate

7 A\
Sk

Yy
L

Si Sj

new node
Node Addition

N

* Find the least costly memory server, and its virtual node

Set Set
Si Qi g—\ Sj

f

moved removed

Node Removal

N\
)

6/26/13

The George Washington University

11

Outline

= Background and Motivation

» |nitial Hash Space Partitioning
= Dynamic Adaptation

= Evaluation

= Conclusions

6/26/13 The George Washington University 12

Experimental Setup

= [Lab setup

o Five experimental servers(4x Intel Xeon X3450 2.67GHz
processor, 16GB, and a 500GB 7200RPM hard drive)

= Amazon setup
o 15 medium instances

Clients /" amazon

= 4 Memorﬁ
= E (e
— T

= ~N\| [~ Proxy . memcd < (_memcd)
;/K - Elastic Decision (+/-)

= All workloads are from Wikipedia data and access traces

6/26/13 The George Washington University 13

Initial Hash Space Assignment

= 5 memory servers used (total 500 virtual nodes)
o For consistent hashing, 100 virtual nodes per each server

o For our scheme, the initial setis 5 x 4 = 20, and 25 virtual
nodes per node

Conswtent T \I L A A " Consistent EZ=
LI LR Adapiive B |

IIHIIII lllwllllllﬂ WIII‘I% IWI”I| ||| HI{ .

| H H\HHHIIHH\HHH HHIHHHHH
\IHHH\HHHHHIHIHI|H|H|HHH|HHHHIHIHIHHIHIH\ JHLSFLIFRAFLSYL IO 400
00 0 0 0 O 00 0 0
IR R RN ARATERTANAREOR PN AR 200
TR TR RAARN 0 T R

32
Hash Space (0 - 27) Server Number

—_
\}
-
=}

[

[Sm—
]
o
o

800 r
600

Server Number

—_— N W R = N W R W

Hash Space Size (x106)

Server Number

* The largest gap between the biggest hash size and the
smallest hash size is 381,114,554 (= 20% more)

6/26/13 The George Washington University 14

Dynamic Partitioning

= a=1.0 (only hit rate)

Z04]
Host | =——
0.2 Host2
5 O
00030 100 150 200 250 300
Time (5 hours)

* a =0 (only usage ratio)

4500
S 4000}
= 35001
£.3000¢

-5

50

100
Time (5 hours)

150 200 250 300

0 50

6/26/13

100
Time (5 hours)

150 200 250 300

) Host 1

Host 2
Host 3

S
O
&
g
o
=
o
&
% 500
o
F
%

100
Time (5 hours)

150 200 250 300

g/\
I
e
g
o Host2 ——=314 %
<=
3
T
0 50 100 150 200 250 300
Time (5 hours)

Host2 ——=409 %

Hash Space (0 - 2°%)

0 100 200 250 300

150
Time (5 hours)

The George Washington University

15

o Behavior

= Whena=0.5,(8=0.01

i ~ 4T el i
1.0 | < T
< ‘K
o 038 k= 3 Host 1 .:,
*506 = Host 2 e ‘ .
M S
A Q 2{ Host 3 e :
Z 0.4 > | b
0o & 1777
0.0 S bl - * 0 - - - - -
0 50 100 150 200 250 300 0 50 100 150 200 250 300
Time (5 hours) Time (5 hours)
N/‘\
m(\l
(@)
‘qj Host2——=352 %
2
(o8
/9]
=
&
T
005350 100 150 200 250 300 0 50 100 150 200 250 300

Time (5 hours) Time (5 hours)

6/26/13 The George Washington University 16

Node Addition / Removal

~

O8]

[E—
T
gl

of Reqs per min(x103)
[N}

)

o 50 100 150 200

o)

X 2

=

5 fhf

2l

2 1iah

O fia

M b 4

5 R

*) ‘ ~ Host removed

0 50 100 150 200

Time (3 hours)

6/26/13

Hash Space (0 - 2°%)

Hash Space (0 - 2°2)

= Addition

= A new node takes
reduces load on the
overloaded server

100
Time (3 hours)

* Removal
= Removing an
underloaded server
gives cost benefits
S 22 while maintaining

Time (3 hours) peﬁOHnance

The George Washington University 17

B Behavior

= Amount ratio of hash space movement
» Determine the speed of adaptability

» Use 3 =0.01(1%) to show the behavior

2.5 =6
_ ="l =001
=204 R
Z 24
51'5 Host 1 —— e §3 | H
Q Host 2 ssessssseseeee fa n | H
glOEHost3 ---------------- ' f@Z | AT
vy | L T
Zosy g 2 e =3
oV . i e 0 |
g hoee s T 2 ‘

00 . i _ i i =0 50 100 150 200 250 300

~0 50 100 150 200 250 300 Time (5 hours)
Time (5 hours)
Traffic changes over 5 hours Moved hash space per each scheduling

6/26/13 The George Washington University 18

Scaling Up / Down

= Dynamically add / remove server(s) depending on amount
of load intensity

= Watch each server for a period of time (5 min) to check

high load sustainability
= To maximize variation, a = 1 (hit rate only)
= 5 Wikipedia traffic generators used

6/26/13

160 |

KN4 g
=

A=

=100

- S |V A N . (1R
L 80t
g 60
&

5 40|

**
20

0

a i
N (@)

of Servers

Time (5 hours)

The George Washington University

O

i
0

I
3

N

i
W

19

QoE Improvement

»120

éJ Ketama % 16
o100 F Q 14 [Ketama
E RO 83
= 80 2
g 60| 5 8
S 40 3 °
7 % 3!

' 5 4
gb 20 B S 92l
<« 9 °©

O) sﬁ XA KXd K BXA BXA & ** O
0123456.738U2910
o Value [0.0, 1.0]
Usage rate < > Hit rate

= Wikipedia workload achieves better response time as hit
rate increases (= 45% increase)

= But the number of servers used increases as well

= As recommendation, the combination of hit rate and
usage rate (a = 0.5) is a good administrative choice

6/26/13 The George Washington University 20

Related Work

= [Stoica, ToN 03] Chord Peer-to-Peer architecture

» [Nishtala, NSDI 13] Scaling Memcached at Facebook

[Zhu, HotCloud 12] Shrinking memcached to save $$

» |deas may apply to many other key-value based storage
systems: couchebase, redis, SILT, FAWN, etc

6/26/13 The George Washington University 21

Conclusion

= Summary

o A hash space allocation scheme
Carefully place nodes to ensure adjacency

o Adaptive partitioning of the cache’s hash space
Maximize hit rate and minimize difference in utilization rate

o An automated replica management system
Detect sustained overload and add or remove nodes

= Future works

o Automatic a value adjustment to minimize response time

o Targeted management of hot objects without impacting
application performance

6/26/13 The George Washington University 22

