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§  Two orders of magnitude more reads than writes  
§  Solution: Deploy memcached hosts to handle the read 

capacity  

Background: Memory Caching 
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§  Databases are hard to scale… Memcached is easy 
o  Facebook has 10,000+ memcached servers 

    
§  Partition data and divide key space among all nodes 

o  Simple data model. Stupid nodes. 
    

§  Web application must track where each object is stored 
o  Or use a proxy like moxi 

Memcached at Scale 
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§  Random placement… 
§  Skewed popularity distributions… 

Scales easily, but loads are imbalanced 

Load on Wikipedia’s memcached servers 



§  Consistent hashing does not evenly load data across 
memory cache servers 
o  Variation in number of keys assigned to each server 
o  Key popularity is skewed and changes over time 

 
 
 
 

§  Solution: dynamically balance load according to the 
performance 

Motivation 
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§  A hash space allocation scheme  
o  allows for targeted load shifting between unbalanced 

servers 
§  Adaptive partitioning of the cache’s hash space 

o  automatically meet hit rate and server utilization goals 
§  An automated replica management system 

o  adds or removes cache replicas based on overall cache 
performance 

Contributions 
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§  Background and Motivation 

§  Initial Hash Space Partitioning 

§  Dynamic Adaptation 

§  Evaluation 

§  Conclusions 

Outline 
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§  Simple Hashing 
o  hash(key) % [# of server] 
o  Once assigned, never changes 
o  If node added or removed, all objects 

need to be rearranged 

§  Consistent hashing  
o  Treat hash space as ring with nodes 

assigned to each region 
o  Node addition / removal only affects 

adjacent nodes 
o  Used in P2P systems and by popular 

memcached proxy system Moxi 

Background: Hash Space Allocation 
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§  To enable efficient repartitioning of the hash space: 
o  Every node is adjacent to every other node 
o  This allows a simple transfer of load between two nodes by 

adjusting just one boundary  

§  Required number of duplicate nodes =  
§  Total number of nodes =  
§  Multiply number of virtual nodes 

Initial Assignment 
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§  Two factors to measure server performance: 
o  Hit rate: enough memory for popular data 
o  Usage ratio: server processing 

§  Minimize {cost = hit rate + usage ratio} 

§  Scheduling decision: 
o  Find the most different two memory servers 
o  Find the most different two adjacent virtual nodes 

§  Size of hash space moved at each scheduling decision 
o  Determine the speed of adaptability, but more fluctuation 
o  Using ratio value:  

Dynamic Hash Space Scheduling 
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§  Balance out the requests across replicas that overall 
performance improves  

§  Highly overloaded server(s) sustaining a certain period of 
time should be backed by new server(s) 

§  Find the most costly memory server, and its virtual node 

§  Find the least costly memory server, and its virtual node 

Node Addition / Removal 
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§  Background and Motivation 

§  Initial Hash Space Partitioning 

§  Dynamic Adaptation 

§  Evaluation 

§  Conclusions 

Outline 



§  Lab setup  
o  Five experimental servers(4× Intel Xeon X3450 2.67GHz 

processor, 16GB, and a 500GB 7200RPM hard drive) 
§  Amazon setup 

o  15 medium instances 
 
 
 
  

§  All workloads are from Wikipedia data and access traces 

Experimental Setup 
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§  5 memory servers used (total 500 virtual nodes) 
o  For consistent hashing, 100 virtual nodes per each server 
o  For our scheme, the initial set is 5 x 4 = 20, and 25 virtual 

nodes per node 

§  The largest gap between the biggest hash size and the 
smallest hash size is 381,114,554 (≅ 20% more)  

Initial Hash Space Assignment 
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Dynamic Partitioning 
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§  α = 1.0 (only hit rate) 
 
 
 
 
  
  

§  α = 0 (only usage ratio) 
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§  When α = 0.5, β = 0.01  

α Behavior 

6/26/13 The George Washington University 16 

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

H
it 

Ra
te

Time (5 hours)

Host 1
Host 2
Host 3  0

 1

 2

 3

 4

0 50 100 150 200 250 300

# 
of

 R
eq

s p
er

 m
in

(x
10

3 )

Time (5 hours)

Host 1
Host 2
Host 3

0.0

0.2

0.4

0.6

0.8

1.0

0 50 100 150 200 250 300

Co
st

Time (5 hours)

Host 1
Host 2
Host 3

H
as

h 
Sp

ac
e 

(0
 - 

232
)

Time (5 hours)

Host 1
Host 2
Host 3

0 50 100 150 200 250 300

33.3 % Host 1 27.6 %

33.3 % Host 2 35.2 %

33.3 % Host 3 37.0 %



6/26/13 The George Washington University 17 

§  Addition 
§  A new node takes 

reduces load on the 
overloaded server 

Node Addition / Removal 
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§  Removing an 
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§  Amount ratio of hash space movement 
§  Determine the speed of adaptability 
§  Use β = 0.01 (1%) to show the behavior 

β Behavior 
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§  Dynamically add / remove server(s) depending on amount 
of load intensity 

§  Watch each server for a period of time (5 min) to check 
high load sustainability 

§  To maximize variation, α = 1 (hit rate only) 
§  5 Wikipedia traffic generators used 

Scaling Up / Down 
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§  Wikipedia workload achieves better response time as hit 
rate increases (≈ 45% increase) 

§  But the number of servers used increases as well 
§  As recommendation, the combination of hit rate and 

usage rate (α = 0.5) is a good administrative choice 

QoE Improvement 
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§  [Stoica, ToN 03] Chord Peer-to-Peer architecture 
  

§  [Nishtala, NSDI 13] Scaling Memcached at Facebook 
    

§  [Zhu, HotCloud 12] Shrinking memcached to save $$ 

§  Ideas may apply to many other key-value based storage 
systems: couchebase, redis, SILT, FAWN, etc 

Related Work 



§  Summary 
o  A hash space allocation scheme  

Carefully place nodes to ensure adjacency 
   

o  Adaptive partitioning of the cache’s hash space 
Maximize hit rate and minimize difference in utilization rate 
 

o  An automated replica management system 
Detect sustained overload and add or remove nodes 

§  Future works 
o  Automatic α value adjustment to minimize response time 
o  Targeted management of hot objects without impacting 

application performance 

Conclusion 
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