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Background: Memory Caching

= Two orders of magnitude more reads than writes

= Solution: Deploy memcached hosts to handle the read
capacity
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Memcached at Scale

= Databases are hard to scale... Memcached is easy
o Facebook has 10,000+ memcached servers

» Partition data and divide key space among all nodes
o Simple data model. Stupid nodes.

= Web application must track where each object is stored
o Or use a proxy like moxi

Clients

Web Servers

Memcached
nodes
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Scales easily, but loads are imbalanced

= Random placement...

= Skewed popularity distributions...
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Load on Wikipedia’s memcached servers
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Motivation

» Consistent hashing does not evenly load data across
memory cache servers

o Variation in number of keys assigned to each server
o Key popularity is skewed and changes over time
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= Solution: dynamically balance load according to the
performance
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Contributions

= A hash space allocation scheme

o allows for targeted load shifting between unbalanced
servers

» Adaptive partitioning of the cache’s hash space
o automatically meet hit rate and server utilization goals

= An automated replica management system

o adds or removes cache replicas based on overall cache
performance
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Outline

= Background and Motivation

» |nitial Hash Space Partitioning
= Dynamic Adaptation

= Evaluation

= Conclusions
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Background: Hash Space Allocation

= Simple Hashing Memory
o hash(key) % [# of server]
o Once assigned, never changes
o If node added or removed, all objects

need to be rearranged server[key % 3]

» Consistent hashing

Memory Memory

Server Server Server

o Treat hash space as ring with nodes ,°’ 3,
assigned to each region ,( \@i\vbelong .

o Node addition / removal only affects Key Hash Space 'fe
adjacent nodes ' 232 '

o Used in P2P systems and by popular s‘\ %o
memcached proxy system Moxi * ‘

CeN3e ®
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Initial Assignment

» To enable efficient repartitioning of the hash space:
o Every node is adjacent to every other node

o This allows a simple transfer of load between two nodes by
adjusting just one boundary

n
= Required number of duplicate nodes = v > T2 =np—1,
= Total number of nodes = ng X (ng — 1) "0
= Multiply number of virtual nodes
— —
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Dynamic Hash Space Scheduling

= Two factors to measure server performance:
o Hit rate: enough memory for popular data
o Usage ratio: server processing

= Minimize {cost = hit rate + usage ratio}

= Scheduling decision: a € [0,1]
o Find the most different two memory servers
o Find the most different two adjacent virtual nodes

= Size of hash space moved at each scheduling decision
o Determine the speed of adaptability, but more fluctuation
o Using ratio value: B € (0,1]
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Node Addition / Removal

= Balance out the requests across replicas that overall
performance improves

» Highly overloaded server(s) sustaining a certain period of
time should be backed by new server(s)

* Find the most costly memory server, and its virtual node
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Outline

= Background and Motivation

» |nitial Hash Space Partitioning
= Dynamic Adaptation

= Evaluation

= Conclusions
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Experimental Setup

= [Lab setup

o Five experimental servers(4x Intel Xeon X3450 2.67GHz
processor, 16GB, and a 500GB 7200RPM hard drive)

= Amazon setup
o 15 medium instances

Clients /" amazon

= 4 Memorﬁ
= E (e
— T

= ~N\| [~ Proxy . memcd < (_memcd )
;/K - Elastic Decision (+/-)

= All workloads are from Wikipedia data and access traces
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Initial Hash Space Assignment

= 5 memory servers used (total 500 virtual nodes)
o For consistent hashing, 100 virtual nodes per each server

o For our scheme, the initial setis 5 x 4 = 20, and 25 virtual
nodes per node

Conswtent T \I L A A " Consistent EZ=
LI LR Adapiive B |

IIHIIII lllwllllllﬂ WIII‘I% IWI”I| ||| HI{ .

| H H\HHHIIHH\HHH HHIHHHHH
\IHHH\HHHHHIHIHI|H|H|HHH|HHHHIHIHIHHIHIH\ JHLSFLIFRAFLSYL IO 400
00 0 0 0 O 00 0 0
IR R RN ARATERTANAREOR PN AR 200
TR TR RAARN 0 T R

32
Hash Space (0 - 27) Server Number

—_
\}
-
=}

[

[Sm—
]
o
o

800 r
600

Server Number

—_— N W R = N W R W

Hash Space Size (x106)

Server Number

* The largest gap between the biggest hash size and the
smallest hash size is 381,114,554 (= 20% more)
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Dynamic Partitioning

= a=1.0 (only hit rate)
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o Behavior

= Whena=0.5,(8=0.01
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Node Addition / Removal
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= Addition

= A new node takes
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overloaded server
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B Behavior

= Amount ratio of hash space movement
» Determine the speed of adaptability

» Use 3 =0.01(1%) to show the behavior
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Scaling Up / Down

= Dynamically add / remove server(s) depending on amount
of load intensity

= Watch each server for a period of time (5 min) to check

high load sustainability
= To maximize variation, a = 1 (hit rate only)
= 5 Wikipedia traffic generators used
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QoE Improvement
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= Wikipedia workload achieves better response time as hit
rate increases (= 45% increase)

= But the number of servers used increases as well

= As recommendation, the combination of hit rate and
usage rate (a = 0.5) is a good administrative choice
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Related Work

= [Stoica, ToN 03] Chord Peer-to-Peer architecture

» [Nishtala, NSDI 13] Scaling Memcached at Facebook

[Zhu, HotCloud 12] Shrinking memcached to save $$

» |deas may apply to many other key-value based storage
systems: couchebase, redis, SILT, FAWN, etc
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Conclusion

= Summary

o A hash space allocation scheme
Carefully place nodes to ensure adjacency

o Adaptive partitioning of the cache’s hash space
Maximize hit rate and minimize difference in utilization rate

o An automated replica management system
Detect sustained overload and add or remove nodes

= Future works

o Automatic a value adjustment to minimize response time

o Targeted management of hot objects without impacting
application performance
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