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Android OS

* Smartphone Operating System by Google
* 49.4% Market share in the US [1]
e 75% Market share worldwide [2]
e Over 700,000 apps at the end of 2012 [3]

* Developers average ~52,700 per app, per
month [4]




Traditional Development and Debugging

* Eclipse — Open Source IDE
* Android Developer Tools and Debugger

* Android SDK (“Java” Apps and the Framework API)

* Emulator

e Automatic Ul Interactions (Monkey, MonkeyRunner, uiautomator — Not
related)

* System tracing utilities
 Static code analysis

* Android NDK (Native libraries)

* A compiler, a linker, and a non-standard C library.



Challenges to Traditional Debugging on
Android

* Lots of Inter-Process Communication (IPC)
* Both within the app and through the framework

* Lots of Asynchronous Functions and Threading
e Background processes, foreground processes in the same App



Complex Device Disorders

* Performance issues
* Bug’s disappearing with the debugger (Heisenbugs)
e Battery life issues

* How can we solve these issues when all our tools focus on a single
application?



How can we debug complex disorders?

Provenance!



Provenance for Troubleshooting

 Chiarini’s Provenance for System Troubleshooting [5].

* Focuses on *nix based server environments

* Goals were to improve a system’s administrators mental model of the
system.



Our Contribution: Provenance for
Debugging

* A manner to gather low level system provenance on Android with
minimal performance impact

* A way of quickly querying our provenance output



Provenance for Debugging Requirements

* Low level Information Source: Linux Audit [4]
* A Data Provenance System: SPADE [5]

* A Provenance Querying Method
 Builtin to SPADE



Information Source: Linux Audit
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Provenance System: SPADE for Android
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Querying the Android SPADE database
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Provenance Debugging Methodology

* Installed Android ports of SPADE and Audit on a Samsung Galaxy
Nexus phone running a custom Android (AOSP) OS.
e https://github.com/nwhusted/AuditdAndroid
* http://spade.csl.sri.com/SPADE/Downloads.html

* Configured Audit to ignore information regarding SPADE and itself
* We ran our example applications and manually interfaced with them

* Final output was analyzed on a desktop machine
e Output graphs were ~900 vertices and ~5000 edges

e Qutput was filtered with SPADE’s Interactive Query Client



Provenance for Solving Wakelocks
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Provenance for Solving Ul Latency

* Enthusiast replaces blocking calls to /dev/random

* Potential solution: Call /dev/urandom instead.

* [t's easy to identify if a call is being made to /dev/random instead of /

dev/urandom:
* result = getEdges(null, location:/dev/*random, operation:read)



Provenance Has Little Performance
Impact

Configuration AnTuTu Score

Factory 7890
Default

Audit Only 7770
Audit with 7760
SPADE

* Score Context
e 8634 (according to website)

« 16301 (Galaxy S IlI)



Conclusion

* Our system captures complicated system bugs
* Our system impacts performance negligibly
e Querying system bugs is “straight forward”

* Querying still requires expert knowledge of the system
* This could be eased by increased developer tools
* Google could integrate our method in to their tool chain
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