Android Provenance:
Debugging Device
Disorders

Nathaniel Husted Sharjeel Qureshi*, Dawood Tariqg, Ashish Gehani
Indiana University SRI International

Android OS

* Smartphone Operating System by Google
* 49.4% Market share in the US [1]
e 75% Market share worldwide [2]
e Over 700,000 apps at the end of 2012 [3]

* Developers average ~52,700 per app, per
month [4]

Traditional Development and Debugging

* Eclipse — Open Source IDE
* Android Developer Tools and Debugger

* Android SDK (“Java” Apps and the Framework API)

* Emulator

e Automatic Ul Interactions (Monkey, MonkeyRunner, uiautomator — Not
related)

* System tracing utilities
 Static code analysis

* Android NDK (Native libraries)

* A compiler, a linker, and a non-standard C library.

Challenges to Traditional Debugging on
Android

* Lots of Inter-Process Communication (IPC)
* Both within the app and through the framework

* Lots of Asynchronous Functions and Threading
e Background processes, foreground processes in the same App

Complex Device Disorders

* Performance issues
* Bug’s disappearing with the debugger (Heisenbugs)
e Battery life issues

* How can we solve these issues when all our tools focus on a single
application?

How can we debug complex disorders?

Provenance!

Provenance for Troubleshooting

 Chiarini’s Provenance for System Troubleshooting [5].

* Focuses on *nix based server environments

* Goals were to improve a system’s administrators mental model of the
system.

Our Contribution: Provenance for
Debugging

* A manner to gather low level system provenance on Android with
minimal performance impact

* A way of quickly querying our provenance output

Provenance for Debugging Requirements

* Low level Information Source: Linux Audit [4]
* A Data Provenance System: SPADE [5]

* A Provenance Querying Method
 Builtin to SPADE

Information Source: Linux Audit

User Applications
User :
Application 1 Usef
’ Application 2
... I,
I -
......... R PP RPN R PR PP PP PP
Local AF_UNIX .
! Sockel - System Services
SPADE (¢ === =+ Auditd 4 Auditcti
/
} /
7
System | Y, Kernel
Calls S~a L , .
_ ‘:» Audit » File
SELinux ===="- Manager System

Provenance System: SPADE for Android

Android Application Components

\4
—» Transaction Reader Thread Control Thread > Transformation Thread
Android Audit Interface SPADE Kernel GraphViz Storage Interface
Event Reader Thread Provenance Collection Thread Writer Thread

<> <=
Binder Log Audit Log IORuns Filter w

Querying the Android SPADE database

Device / Emulator

=1

Android
Debugger
(adb)

GraphViz Reader

SPADE on Desktop

neo4j
Graph Database

>»

Query
Processor
Thread

Socket

!

Interactive Query Client

Provenance Debugging Methodology

* Installed Android ports of SPADE and Audit on a Samsung Galaxy
Nexus phone running a custom Android (AOSP) OS.
e https://github.com/nwhusted/AuditdAndroid
* http://spade.csl.sri.com/SPADE/Downloads.html

* Configured Audit to ignore information regarding SPADE and itself
* We ran our example applications and manually interfaced with them

* Final output was analyzed on a desktop machine
e Output graphs were ~900 vertices and ~5000 edges

e Qutput was filtered with SPADE’s Interactive Query Client

Provenance for Solving Wakelocks

pid:345

ppid:126 (R
. : tion:write
unique_id:25773557 . _\opera
name:AlarmManager fime:1234897799.992 ocation:/sys/power/wake_loc

g vy
uid:1000 1000 1000 1000 feg-tinique id:-1878963060) version:22 !
gid:1000 1000 1000 1000 unique._id:2085087079 :

starttime_unix:1354897554840

rttime_simple:Fri Dec 7 16:25:54 20§12
commandline:system server

(operation:write
time:1354897797.726
pid:313 unique_id:-1718329125
ppid:126
unique_id:1582315120

ocation:/sys/powerfwake_loc
version:18
unique_id:2085087182

(operation:write
_name:system_server time:1354897771.320 CO rre Ct I
u!d:1000 1906 1903 1009 unique_id:609301862) /I&atioT/ss/ owerfwake _unloc °
gid:1000 1000 1000 1000 — :fsys/power) L
starttime_unix:1354897551580) Ve‘dl‘falon.Z
rttime_simple:Fri Dec 7 16:25:51 20§12 unique_id:870983564

commandline:system server

result = getEdges(location:*wake *lock, null, operation:write)

Provenance for Solving Ul Latency

* Enthusiast replaces blocking calls to /dev/random

* Potential solution: Call /dev/urandom instead.

* [t's easy to identify if a call is being made to /dev/random instead of /

dev/urandom:
* result = getEdges(null, location:/dev/*random, operation:read)

Provenance Has Little Performance
Impact

Configuration AnTuTu Score

Factory 7890
Default

Audit Only 7770
Audit with 7760
SPADE

* Score Context
e 8634 (according to website)

« 16301 (Galaxy S IlI)

Conclusion

* Our system captures complicated system bugs
* Our system impacts performance negligibly
e Querying system bugs is “straight forward”

* Querying still requires expert knowledge of the system
* This could be eased by increased developer tools
* Google could integrate our method in to their tool chain

Acknowledgements

This material is based upon work supported by the National Science
Foundation under Grant 11S-1116414. Any opinions, findings, and
conclusions or recommendations expressed in this material are those

of the authors and do not necessarily reflect the views of the National
Science Foundation.

References

1. http://www.theinquirer.net/inquirer/news/2250787/android-
takes-the-us-smartphone-market-share-lead-for-january

2. http://readwrite.com/2013/01/29/why-do-americans-hate-
android-and-love-apple

3. http://mashable.com/2012/11/01/so0ogle-apps-tie-apple/

http://www.neobytesolutions.com/which-mobile-oss-apps-make-
most-money/

5. http://www.usenix.org/event/lisall/tech/full_papers/Chiarini.pdf

