
Enabling NVMe WRR support in Linux Block Layer

USENIX HotStorage’17

Kanchan Joshi, Praval Choudhary, Kaushal Yadav
Memory solutions, Samsung Semiconductor India R&D



Outline

 NVMe I/O queues 

 Arbitration methods and WRR

 What it takes to build differentiated I/O service

 Affinity based method and its drawback

 Proposed method 

 Results

 Summary



NVMe I/O Queues
HOST IO Queues NVMe SSD



NVMe I/O Queues
HOST IO Queues NVMe SSD

 Per-CPU queue pair  Parallel I/O distribution  Fast core-local path



Arbitration Methods

Arbitrate

Round-Robin (RR) 

Controller



Arbitration Methods

Arbitrate

Weight 3

Weight 2

Weight 1

Medium

High

Low

Arbitrate

Round-Robin (RR) 

Weighted Round-Robin with urgent priority (WRR) 

Controller

Controller



Problem Statement

How to make prioritization capability (WRR) benefits reach to 
Applications!



WRR Support Requirements

I/O Prioritization

 Need to create prioritized 
I/O queues

 Retain NUMA-friendly path

I/O classification

 How application can 
specify I/O service?

 Per-application or per I/O?



WRR Support Requirements

SQ

SQ

SQ

SQ

Non-prioritized queues

SQ

SQ

SQ

Prioritized queues

SQ

URGENT HIGH

MEDIUM LOW

I/O Prioritization

 Need to create prioritized 
I/O queues

 Retain NUMA-friendly path

I/O classification

 How application can 
specify I/O service?

 Per-application or per I/O?



WRR Support Requirements

SQ

SQ

SQ

SQ

Non-prioritized queues

SQ

SQ

SQ

Prioritized queues

SQ

URGENT HIGH

MEDIUM LOW

APP1

APP2

APP3

APP4

IO classification 
method

SQ

SQ

SQ

SQ

I/O Prioritization

 Need to create prioritized 
I/O queues

 Retain NUMA-friendly path

I/O classification

 How application can 
specify I/O service?

 Per-application or per I/O?



Affinity-based Method

 Prioritization method: Each core hosts one type of submission queue (1:1 mapping)

 Classification method: Affine applications to particular core(s)

CORE 3

SQ CQ

L

O

W

CORE 2

SQ CQ

M

E

D

I

U

M

CORE 1

SQ CQ

H

I

G

H

CORE 0

SQ CQ

U

R

G

E

N

T

NVMe Controller



Affinity-based Method

 Prioritization method: Each core hosts one type of submission queue (1:1 mapping)

 Classification method: Affine applications to particular core(s)

CORE 3

SQ CQ

L

O

W

CORE 2

SQ CQ

M

E

D

I

U

M

CORE 1

SQ CQ

H

I

G

H

CORE 0

SQ CQ

U

R

G

E

N

T

NVMe Controller

Affine Affine Affine Affine

URGENT HIGH MEDIUM LOW



Drawbacks

 All running applications must be affined 
(Arbitrary I/O performance otherwise)



Drawbacks

 All running applications must be affined 
(Arbitrary I/O performance otherwise)

C1

HIGH PRIORITY

C3

LOW PRIORITY

C2

MEDIUM PRIORITY

 Reduction in compute-ability

 Mandatory affinity leading to 
asymmetric core-utilization



Proposed Method: I/O Priority-based

I/O Prioritization

 Create prioritized I/O queues 
on each core

 Retain NUMA-friendly path

I/O Classification

 Link NVMe priorities to 
existing I/O priority classes

 Per-application



Proposed Method: I/O Priority-based

I/O Prioritization

 Create prioritized I/O queues 
on each core

 Retain NUMA-friendly path

I/O Classification

 Link NVMe priorities to 
existing I/O priority classes

 Per-application

CORE 0

SQ CQ

U

R

G

E

N

T

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W



Proposed Method: I/O Priority-based

APP1

APP2

APP3

APP4

IO scheduling class

NVMe queue priority

SQ

SQ

SQ

SQ

I/O Prioritization

 Create prioritized I/O queues 
on each core

 Retain NUMA-friendly path

I/O Classification

 Link NVMe priorities to 
existing I/O priority classes

 Per-application

CORE 0

SQ CQ

U

R

G

E

N

T

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W



I/O Priority-based Method

 Prioritization Method: Each core hosts four type of submission queues (4:1 mapping)
 Classification Method: Reuse existing I/O scheduling classes

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 1

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 2

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 3

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

NVMe Controller

 Compute-ability unaffected  Does not require modifying applications



I/O Priority-based Method

 Prioritization Method: Each core hosts four type of submission queues (4:1 mapping)
 Classification Method: Reuse existing I/O scheduling classes

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 1

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 2

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 3

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

NVMe Controller

Real-time

 Compute-ability unaffected  Does not require modifying applications



I/O Priority-based Method

 Prioritization Method: Each core hosts four type of submission queues (4:1 mapping)
 Classification Method: Reuse existing I/O scheduling classes

CORE 0

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 1

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 2

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

CORE 3

SQ SQ SQ SQ CQ

U

R

G

E

N

T

H

I

G

H

M

E

D

I

U

M

L

O

W

NVMe Controller

Real-time Best-effort None Idle

 Compute-ability unaffected  Does not require modifying applications



Modified NVMe Stack (4.10 Kernel)

VFS/Page cache

Single-queue Multi-queue

deadline

CFQ

NVMe driver
(Modified)

SATA driver

Block Layer

 Specify io-priority class value 
while running (ionice)

 This is stored in io_context
inside task_struct

 Obtain io-class value from 
io_context (or from request)

 Map io-class to queue-priority 
value and place command in 
corresponding SQ

Real-time Urgent

Best-effort

None

Idle

High

Medium

Low



Ionice example on NVMe

Best-effort

210K

High

Idle

75.8K

Low

None

143K

Medium



Experimental Setup

 Linux 4.10 Kernel 
(Modified NVMe Driver)

 Dell R720 server
 32 CPUs (2 NUMA nodes)
 32 GB RAM

 Samsung PM1725a SSD 
(With WRR arbitration)



Result #1

 IOPS distribution among 3 applications

Application configuration
 4 FIO jobs 
 QD 64
 4K record 



Result #1

 IOPS distribution among 3 applications

Application configuration
 4 FIO jobs 
 QD 64
 4K record 

Weight-based

distribution



Result #1

 IOPS distribution among 3 applications

Application configuration
 4 FIO jobs 
 QD 64
 4K record 

Weight-based

distribution

420 420 423 419



Result #2

 Bandwidth distribution among 3 applications

Application configuration
 4 FIO jobs 
 QD 64
 128K record 



Result #2

 Bandwidth distribution among 3 applications

Application configuration
 4 FIO jobs 
 QD 64
 128K record 

Weight-based

distribution



Result #3

 Foreground/Background IO control



Result #3

 Foreground/Background IO control

Foreground Read IOPS

 WRR mode
 Background process can be throttled
 16:1 = Throttle BG process
 128:1 = Further throttling. Retains 

foreground performance

 RR mode
 Sharp decline in IOPS
 Background process cannot be throttled



Summary

 Differentiated I/O service for applications can be built using WRR arbitration 

 Scheduler-independent prioritization: Applications get the advantage of the prioritization natively present 
inside the device

 Proposed method does not reduce compute-ability of applications

 By not introducing new interface/API, need of rebuilding application is avoided

 Future work
 Kernel patch
 Sysfs support for run-time WRR configuration



Acknowledgements
Rajesh Sahoo, Anshul Sharma, Sungyoung Ahn, Manoj Thapliyal, Vikram Singh, and Seunguk Shin


