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 Per-CPU queue pair  Parallel I/O distribution  Fast core-local path
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Problem Statement

How to make prioritization capability (WRR) benefits reach to 
Applications!



WRR Support Requirements

I/O Prioritization

 Need to create prioritized 
I/O queues

 Retain NUMA-friendly path

I/O classification

 How application can 
specify I/O service?

 Per-application or per I/O?
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Affinity-based Method

 Prioritization method: Each core hosts one type of submission queue (1:1 mapping)

 Classification method: Affine applications to particular core(s)
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Drawbacks

 All running applications must be affined 
(Arbitrary I/O performance otherwise)
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 All running applications must be affined 
(Arbitrary I/O performance otherwise)
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 Reduction in compute-ability

 Mandatory affinity leading to 
asymmetric core-utilization
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 Link NVMe priorities to 
existing I/O priority classes

 Per-application
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Proposed Method: I/O Priority-based
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I/O Priority-based Method

 Prioritization Method: Each core hosts four type of submission queues (4:1 mapping)
 Classification Method: Reuse existing I/O scheduling classes
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 Compute-ability unaffected  Does not require modifying applications
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 Prioritization Method: Each core hosts four type of submission queues (4:1 mapping)
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I/O Priority-based Method

 Prioritization Method: Each core hosts four type of submission queues (4:1 mapping)
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Real-time Best-effort None Idle

 Compute-ability unaffected  Does not require modifying applications



Modified NVMe Stack (4.10 Kernel)

VFS/Page cache

Single-queue Multi-queue

deadline

CFQ

NVMe driver
(Modified)

SATA driver

Block Layer

 Specify io-priority class value 
while running (ionice)

 This is stored in io_context
inside task_struct

 Obtain io-class value from 
io_context (or from request)

 Map io-class to queue-priority 
value and place command in 
corresponding SQ

Real-time Urgent

Best-effort

None

Idle

High

Medium

Low



Ionice example on NVMe
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Experimental Setup

 Linux 4.10 Kernel 
(Modified NVMe Driver)

 Dell R720 server
 32 CPUs (2 NUMA nodes)
 32 GB RAM

 Samsung PM1725a SSD 
(With WRR arbitration)



Result #1

 IOPS distribution among 3 applications

Application configuration
 4 FIO jobs 
 QD 64
 4K record 
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Result #2

 Bandwidth distribution among 3 applications

Application configuration
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 128K record 
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Result #3

 Foreground/Background IO control



Result #3

 Foreground/Background IO control

Foreground Read IOPS

 WRR mode
 Background process can be throttled
 16:1 = Throttle BG process
 128:1 = Further throttling. Retains 

foreground performance

 RR mode
 Sharp decline in IOPS
 Background process cannot be throttled



Summary

 Differentiated I/O service for applications can be built using WRR arbitration 

 Scheduler-independent prioritization: Applications get the advantage of the prioritization natively present 
inside the device

 Proposed method does not reduce compute-ability of applications

 By not introducing new interface/API, need of rebuilding application is avoided

 Future work
 Kernel patch
 Sysfs support for run-time WRR configuration
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