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Storage Needs Over 
The Years

u Early FS: Static Mapping
u Hierarchy
u Streaming – Sequential I/O is king
u Crash consistency, Journaling
u Versioning, Snapshotting, Cloning
u Dedupe, Encryption
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Distributing File Systems 
is hard

u Most file systems are built to span a single device
u Emerging file systems (zfs, btrfs) may span multiple devices 

but doesn’t scale past a single machine
u Distributed file systems scale but suffer from consistency 

issues
u Read/write is simple

u Advanced features like snapshotting, versioning and cloning 
often require locking, if supported at all
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Redesign a distributed FS 
from the ground up

u A log is an ideal substrate for a FS
u Employed by many filesystems today, 

dating from LFS
u What if we had a efficient, distributed log?
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Distributed Log
u Silver leverages a fault-tolerant, replicated distributed log
u Previously described in Corfu [NSDI’12], Tango [SOSP’13]
u Augmented with Replex [1]

u [1] Replex: A Scalable, Highly Available Multi-Index Data 
Store
Amy Tai, Michael Wei, Michael J. Freedman, Ittai Abraham 
and Dahlia Malkhi
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A distributed shared log

Write Scaling – Fast Updates

Read Scaling – Fast Random Reads

Strong Consistency – Snapshots
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Streams 7



Backpointers 8



Replex 9



Log Operations
u Reads

u Random log read given offset

u Random stream read given offset

u Bulk read of entire or partial stream

u Writes
u Append to a particular stream

u Queries
u Get last address written to a stream

u Trim
u Releases the space used for an address

u Entries are variably sized
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Silver Architecture

u Composed of streams
u Metadata streams, represent “files”

u Data streams, represent file data

u Directory streams, represent directories

u First stream is a “root” directory stream
u Each stream records deltas, or changes to that 

stream
u Every ‘overwrite’ is an append of the delta
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Continuous Snapshots
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Caching
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Tiering
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Clones (CoW)
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Checkpointing
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Evaluation

u Corfu log built in Java
u FUSE prototype over JNR
u Simple: ~4,000 SLOC
u Java limits performance measurements
u Log microbenchmarks:

u 60K appends/s, ~100k streams

u 50ms to read a stream with 200 entries in a system 
with 100k streams 
(compared to 200ms+ with backpointers).

23



Evaluation

u Basic Ops:
u Cloning any part of FS: <1ms

u Accessing clones: ~.5ms overhead

u Snapshot access: ~2ms to access typical snapshot
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Future Work

u Merge metadata streams into directory streams
u Leverage transactional interface of Corfu
u Performance tuning: C/C++ implementation
u Comparison against HDFS, Ceph, CalvinFS
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Conclusion

u Silver is a file system architected from the ground up to 
take advantage of a efficient, distributed log

u Distributed logs make it easy to support advanced 
operations such as multi-versioning, CoW clones, 
distributed caching and tiering while maintaining 
consistency

u In future work, we hope to take our Java design, which 
has enabled a very rapid prototype to be built and 
translate it into a performant native design
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