
Silver: A Scalable, Distributed Multi-
versioning, Always Growing (Ag)
File System
Michael Wei *^, Amy Tai #^, Chris Rossbach^,
Ittai Abraham^, Udi Wieder^, Steven Swanson*, Dahlia Malkhi^
^ VMware Research
* University of California, San Diego # Princeton University

Storage Needs Over
The Years

u Early FS: Static Mapping
u Hierarchy
u Streaming – Sequential I/O is king
u Crash consistency, Journaling
u Versioning, Snapshotting, Cloning
u Dedupe, Encryption

2

Distributing File Systems
is hard

u Most file systems are built to span a single device
u Emerging file systems (zfs, btrfs) may span multiple devices

but doesn’t scale past a single machine
u Distributed file systems scale but suffer from consistency

issues
u Read/write is simple

u Advanced features like snapshotting, versioning and cloning
often require locking, if supported at all

3

Redesign a distributed FS
from the ground up

u A log is an ideal substrate for a FS
u Employed by many filesystems today,

dating from LFS
u What if we had a efficient, distributed log?

4

Distributed Log
u Silver leverages a fault-tolerant, replicated distributed log
u Previously described in Corfu [NSDI’12], Tango [SOSP’13]
u Augmented with Replex [1]

u [1] Replex: A Scalable, Highly Available Multi-Index Data
Store
Amy Tai, Michael Wei, Michael J. Freedman, Ittai Abraham
and Dahlia Malkhi

5

A distributed shared log

Write Scaling – Fast Updates

Read Scaling – Fast Random Reads

Strong Consistency – Snapshots

6

Streams 7

Backpointers 8

Replex 9

Log Operations
u Reads

u Random log read given offset

u Random stream read given offset

u Bulk read of entire or partial stream

u Writes
u Append to a particular stream

u Queries
u Get last address written to a stream

u Trim
u Releases the space used for an address

u Entries are variably sized

10

Silver Architecture

u Composed of streams
u Metadata streams, represent “files”

u Data streams, represent file data

u Directory streams, represent directories

u First stream is a “root” directory stream
u Each stream records deltas, or changes to that

stream
u Every ‘overwrite’ is an append of the delta

11

Silver Example

/

/
d

12

Silver Example

/

/
d

foo

foo
m d

foo

13

Silver Example

/

/
d

foo

foo
m d

foo
da

abc

abc

14

Silver Example

/

/
d

foo

foo
m d

foo
da

abc

def

da
def

15

Silver Example

/

/
d

foo

foo
m d

foo
da

abc
da
def

read 4? -> “abc”

1 2 3 4 5

16

Continuous Snapshots

/
d

foo
m d

foo
da

abc
da
def

1 2 3 4 5

17

Caching

/
d

foo
m d

foo
da

abc
da
def

1 2 3 4 5

1 2 3

4
ghi

18

Tiering

/
d

foo
m d

foo
da

abc
da
def

NVM

SSD

HDD

/
d

foo
m

/
d

19

Clones (CoW)

/

/
d

foo

foo
m d

foo
da

abc
da
def

1 2 3 4 5 6 7 8 9

/@4
d

foo@4

m
foo@4

da da
ghi

20

Clones (CoW)

/

/
d

foo

foo
m d

foo
da

abc
da
def

1 2 3 4 5 6 7 8 9

/@4
d

foo@4

m
foo@4

da da
ghi

21

Checkpointing

/
d

foo
m d

foo
da

abc
da
def

1 2 3 4 5 6
ckpt
def

22

Evaluation

u Corfu log built in Java
u FUSE prototype over JNR
u Simple: ~4,000 SLOC
u Java limits performance measurements
u Log microbenchmarks:

u 60K appends/s, ~100k streams

u 50ms to read a stream with 200 entries in a system
with 100k streams
(compared to 200ms+ with backpointers).

23

Evaluation

u Basic Ops:
u Cloning any part of FS: <1ms

u Accessing clones: ~.5ms overhead

u Snapshot access: ~2ms to access typical snapshot

24

Future Work

u Merge metadata streams into directory streams
u Leverage transactional interface of Corfu
u Performance tuning: C/C++ implementation
u Comparison against HDFS, Ceph, CalvinFS

25

Conclusion

u Silver is a file system architected from the ground up to
take advantage of a efficient, distributed log

u Distributed logs make it easy to support advanced
operations such as multi-versioning, CoW clones,
distributed caching and tiering while maintaining
consistency

u In future work, we hope to take our Java design, which
has enabled a very rapid prototype to be built and
translate it into a performant native design

26

