THE HONG KONG
Q POLYTECHNIC UNIVERSITY

= vt J=EN
AUE B T KER LOUISIANA STATE UNIVERSITY

Optlmlzmg Flash-based Key-value Cache Systems

N \

\\

\\ \\

Zhaoyan Shenf, Feng Chen?, Yichen Jia#, Zili Shaof
\\\
\ TDepartment of Computing, Hong Kong Polytechnic University

T Computer Science & Engineering, Louisiana State University

The 8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’16)

Key-value Information

e Key-value access is dominant in web services
— Many apps simply store and retrieve key-value pairs
— Key-value cache is the first line of defense

* Benefits: Improve throughput, reduce latency, reduce server load
— In-memory KV cache is popular (Memcache)
* High speed but has cost, power, capacity problem

“) Yoo

\X/IKIPEDIA amazon

The Free Encyclopedia

Flash based Key-value Cache

Key-value cache Flash SSD

SHA-1(Key 1) —>| key | (Slab,Slot) ®-------——______________

Hash Index (Memory) Key-value Slabs (Flash LBA)

* In-memory hash map to track key-to-value mapping
e Slabs are used in a log-structured way
* Updated value item written to a new location and old values recycled later

Critical Issues

 Redundant mapping
* Double garbage collection

* Over-over-provisioning

Critical Issues

Critical Issue 1: Redundant Mapping

 Redundant mapping at application- and FTL-level
— KVC: An in-memory hash table (Key = Slab, Offset)
— FTL: An on-device page mapping table (LBA - PBA)

* Problems

— Two mapping structures (unnecessarily) co-exist at two levels
— A ssignificant waste of on-device DRAM space (e.g., 1GB for 1TB)

* The on-device DRAM buffer is costly, unreliable, and could be used for buffering.

1
i : AAA,BBB | |
! AAA,BBB : 0 BBB,CCC | |
T BBB,CCC | 1 ccC,0DD__ [+~

SHA-1(Key) — x| (1,2) & » cccoop |1 2 DDD,EEE

DDD,EEE | =
|
Hash table Slab Space | Mapping
LBA Table PBA
KVC software Mapping FTL Mapping in hardware

Critical Issues

Critical Issue 2: Double Garbage Collection

* Garbage collection (GC) at app- and FTL- levels
— KVC: Recycle deleted or changed key-value items
— FTL: Recycle trimmed or changed pages

* Problems

— Semantic validity of a key-value entry is not seen at FTL
— Redundant data copy operation

AAABEB [CCC,DDD

BBB-ccE [0

€€epbD N4 1

= \ 2
SHA-1(Key) —{ x| (2,1) l 3 AAA,BBB
W l 4 BBB,CCC
I CCC,DDD K| - iy

ash table [
: e DDD,EEE
LBA Table
Slab Space PBA
KVC-level GC FTL-level GC

Critical Issues

Critical Issue 3: Over-over-provisioning

* Over-provisioning at FTL-level
— FTL has a portion (20-30%) of flash as Over-Provisioning Space (OPS)
— OPS space is invisible and unusable to the host applications

* Problems
— OPS is reserved for dealing the worst-case situation, as a storage

— QOver-over provisioning for Key-value caches

» Key-value caches are dominated by read (GET) traffic, not writes

— Key-value cache hit ratio is highly sensitive to usable cache size

* |f 20-30% space can be released, the cache hit ratio can be greatly improved

: AAA,BBB
=
BBB,CCC I :
: — DDD,EEE
SHA-1(Key) ——{ x| (1,2) ¢ CCC,DDD I g
DDD,EEE I
|)
Hash table Slab Space I Mapping
Table

LBA

Critical Issues

Semantic Gap Problem

Key-value cache Flash SSD

-

Semantic Gap > \/

* Fine-grained GC * Physical data layout on flash
* Key-to-value mapping e Direct flash memory control
* Validity of slab entries * Proper mapping granularity

In the current SW/HW architecture, we can do little to
address these three issues.

Optimization Goals

* Redundant mapping =2 Single mapping
* Double garbage collection =2 App-driven GC

* Over-over-provisioning > Dynamic OPS

Design Overview

Key-value Cache

Slab Manager Cache Manager
Key-value Cache
KV o Key/Slab KVC-driven OPS
ache .
. Mappin GC Management
Mapping Slab Mgm Mgm. PPTe £

Operating Systems Library (libssd)

Page Cach 79 B — S W e N o
age Lache Scheduling Driver gm.
Operating Systems
Flash SSD P gy

Garbage Page Wear S Cadlie I/O ' Device
Collection Mapping Leveling Scheduling Driver
Bad Block Flash OPS

Mgm. Operations Mgm. Open-channel SSD

Flash Operations

* An enhanced flash-aware key-value cache
* Athin intermediate library layer (11ibssd)

* A specialized flash memory PCI-E SSD hardware

Key-value Cache

An Enhanced Flash-aware Key-value Cache

* Slab management
* Unified direct mapping
* Garbage collection

* OPS management

Key-value Cache

Slab Management

* Our choice — Directly use a flash block as a slab (8MB)

e Slab buffer: An in-memory slab maintained for each class
— Parallelize and asynchronize the slab write I/Os to the flash memory

* Round-robin allocation of in-flash slab for load-balancing across channels

Key/Va|ue — In-Memory Slab Buffer

Classi Class i+1 Class i+2 Class n

Flash
SSD

Channel #0 Channel #1 Channel #2 Channel #3 Channel #4

Key-value Cache

Unified Direct Mapping

* Collapse multiple levels of indirect mapping to only one
— Prior mapping: Key—>Slab—>LBA—>PBA
— Current mapping: Key—>Slab (i.e., Flash Block)

 Benefits

— Removes the time overhead for lookup intermediate layers (Speed+)
— Only one single must-have in-memory hash table is needed (Cost-)

— On-device RAM space can be completely removed (or for other uses)
|

I AAA,BBB A
I BBB,CCC
| o _CCC,DDD olab #1 AAA,BBB
AA,BB DDD,EEE |+ BBB,CCC
BB.eCE {7 CDC, CDC ¥ CCC,DDD
SHA-1(REN-Hiey) [t *1 | (Slab, Offset) &C,0Db | | | Slab #2 DDD,EEE
| DD,EEE n
1 .
PPINg
Hash tabldash table, Spa#e . e
Flash MemoR/ Flash Memory

Key-value Cache

App-driven Garbage Collection

* One single GCis driven directly by key-value cache system
— All slab writes are in units of blocks (no need for device-level GC)
— GCis directly triggered and controlled by application-level KVC

 Two GC policies
— Greedy GC: the least occupied slab is evicted to move minimum slots

— Quick clean: the LRU slab is immediately dropped recycling valid slots
— Adaptively used for different circumstances (busy or idle)

copy

CCC,DDD 333444 —eeefif—
j . 555666 || J ccc,ddd
44338 bbb,ccc
888,999 aaa,bbb
Victim Slab Target Slab LRU Slab MRU Slab
Greedy GC Quick Clean

Key-value Cache

Over-Provisioning Space Management

* Dynamically tuning OPS space online

— Rationale — KVC is typically read-intensive and OPS can be small

— Goal — keep just enough OPS space (adaptive to intensity of writes)
 OPS management policies

— Heuristic method: An OPS window (W, and W,,) to estimate size

* Low watermark hit — Trigger quick clean, raise the OPS window
e High watermark hit — OPS is over-allocated, lower the OPS window

4 Max OSP

OPS

wW
™~ Quick clean i‘nitiated

Time

Preliminary Experiments

* Implementation
— Key-value cache on Twitter’s Fatcache to fit hardward
— Libssd Library (621 lines of code in C)

* Experimental Setup
— Intel Xeon E-1225, 32GB Memory, 1TB Disk, Open-Channel SSD
— Ubuntu 14.04 LTS, Linux 3.17.8, Ext4 filesystem

 Hardware: Open-channel SSD

— A PCI-E based with 12 channel, and 192 LUNs
— Direct control to the device (via 1oct1 interface) ;

Experiments

Experiments

SET — Throughput and Latency

Our SICheme Our Scheme Stock Fatcache
300000
v 160 [[
- - I 150.9517
250000 Stock Fatcache 140 -
1 e | | 115.4536
5 200000 - (\ 7| 113.2427 108.941
= =100 94.992
§> 155779 s v
2 150000 134169 137461 129705 ‘% 80 | i
- = 163.1231
&3 100000 - 98526 @ O
I ol
50000 - I
20
0 0
Open-CH ngSpec Intel750 ngSton Plextor Samsung Open-CH KlngSpec Intel750 KlngSton Plextor Samsung

sSSD SsSD

» SET Workloads: 40milliom requests of 1KB key/value pairs
* Both set throughput/latency from our scheme are the best

Conclusion

Conclusion

e KV stores become critical as they are one of the most
important building blocks in modern web infrastructures and
high-performance data-intensive applications.

 We build a highly efficient flash-based cache system which
enables three benefits, namely a unified single-level direct
mapping, a cache-driven fine-grained garbage collection, and
an adaptive over-provisioning scheme

* We are implementing a prototype on the Open-Channel SSD
hardware and our preliminary results show that it is highly
promising

THE HONG KONG
Qz POLYTECHNIC UNIVERSITY

S i -1 B
AUE B T KER LOUISIANA STATE UNIVERSITY

Thank You !

Backup Slides

GET — Throughput and Latency

Our Scheme Our Scheme
| Stock Fatcache
300000 | L
I (§ \
256301 1000 972.79
250000 1 Stock Fatcache . 902.65
] |
5 2000001 [) 800 F f
< & 676.14
g 155779 = 600.61
£ o000 134169 137461 429705 g o
e] % | 497 1
8 i 98526 5
¢ 100000 B 400
1 O]
50000 I
| 200
0 L
Open- CH ngSpec Intel750 KlngSton Plextor Samsung 0
SSD Open- CH KlngSpec Intel750 KlngSton Plextor Samsung

* GET performance is largely determined by the raw speed
* GET latencies are among the lowest in the set of SSDs

SET Latencies — A Zoom-in View

x 10" Eblaze-Set-Latency—4-16-Distribution x10° KingSpec-Set-Latency—4-16-Distribution
2.5 T T v v T T 3.5 T w T T ‘ ;
Our Scheme Stock Fatchche + KingSpec
3_
2 L
2.5
= —
S 1.5¢ (%)
5 $ 2
c o
g 15
|]
-
© = 1.5F
A1} A
1t
0.5
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14

Request number x10° Request Number x 10°

* The direct control successfully removes high cost GC effects
* Quick clean removes long I/Os under high write pressure

Block Erase Count

Erase Count

3500 Quick Clean kicks in

1 2 4 6 8

B SSDSim ® Open-channel SSD

3000

2500

2000

1500

1000

50

o

o

* Trace collected with running Fatcache on Samsung SSD
* Block trace is replayed on MSR’s SSD simulator for erase count
e Qur solution reduces erase count by 30%

III%HII\

Effect of the In-memory Slab Buffer

Set Latency 50-512
1

09t
0.6}

osf

CDF

03] P
02f

0

0 20 40 60 80 100
Latency(us)

* 10x buffer size difference does not affect latency significantly
* A small (56MB) in-memory slab buffer is sufficient for use

