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Key-value Information
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• Key-value access is dominant in web services

– Many apps simply store and retrieve key-value pairs

– Key-value cache is the first line of defense
• Benefits: Improve throughput, reduce latency, reduce server load

– In-memory KV cache is popular (Memcache)

• High speed but has cost, power, capacity problem
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• In-memory hash map to track key-to-value mapping

• Slabs are used in a log-structured way

• Updated value item written to a new location and old values recycled later 



Critical Issues
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• Redundant mapping

• Double garbage collection

• Over-over-provisioning



Critical Issue 1: Redundant Mapping
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• Redundant mapping at application- and FTL-level 
– KVC: An in-memory hash table (Key  Slab, Offset)

– FTL: An on-device page mapping table (LBA  PBA)

• Problems 
– Two mapping structures (unnecessarily) co-exist at two levels

– A significant waste of on-device DRAM space (e.g., 1GB for 1TB)
• The on-device DRAM buffer is costly, unreliable, and could be used for buffering.

SHA-1(Key)

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

Slab SpaceHash table

(1, 2)K1

Mapping 
Table

0
1
2
3

AAA, BBB
BBB,CCC
CCC,DDD
DDD,EEE

…
…

PBALBA

Critical Issues

KVC software Mapping FTL Mapping in hardware



Critical Issue 2: Double Garbage Collection
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• Garbage collection (GC) at app- and FTL- levels
– KVC: Recycle deleted or changed key-value items

– FTL: Recycle trimmed or changed pages 

• Problems
– Semantic validity of a key-value entry is not seen at FTL

– Redundant data copy operation
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Critical Issue 3: Over-over-provisioning
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• Over-provisioning at FTL-level
– FTL has a portion (20-30%) of flash as Over-Provisioning Space (OPS)

– OPS space is invisible and unusable to the host applications 

• Problems
– OPS is reserved for dealing the worst-case situation, as a storage

– Over-over provisioning for Key-value caches
• Key-value caches are dominated by read (GET) traffic, not writes

– Key-value cache hit ratio is highly sensitive to usable cache size
• If 20-30% space can be released, the cache hit ratio can be greatly improved 
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Semantic Gap Problem
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Semantic Gap

• Fine-grained GC
• Key-to-value mapping
• Validity of slab entries

• Physical data layout on flash
• Direct flash memory control
• Proper mapping granularity

In the current SW/HW architecture, we can do little to 
address these three issues. 

Key-value cache Flash SSD

Critical Issues



Optimization Goals
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• Redundant mapping  Single mapping

• Double garbage collection  App-driven GC

• Over-over-provisioning  Dynamic OPS



Design Overview
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• An enhanced flash-aware key-value cache

• A thin intermediate library layer (libssd)

• A specialized flash memory PCI-E SSD hardware

Flash SSD

Garbage 
Collection

Page
Mapping

Bad Block 
Mgm.

Flash 
Operations

Wear
Leveling

OPS
Mgm.

Operating Systems

Page Cache
Device
Driver

I/O
Scheduling

Key-value Cache

K/V 
Mapping

Slab Mgm.
Cache
Mgm.

Open-channel SSD

Flash Operations

Operating Systems

Page Cache
Device
Driver

I/O
Scheduling

Library (libssd)

Operation
Conversion

Slab/Flash
Translation

Bad Block 
Mgm.

Key-value Cache

Key/Slab
Mapping

KVC-driven
GC

OPS
Management

Slab Manager Cache Manager



An Enhanced Flash-aware Key-value Cache
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• Slab management

• Unified direct mapping

• Garbage collection

• OPS management

Key-value Cache



• Our choice – Directly use a flash block as a slab (8MB)

• Slab buffer: An in-memory slab maintained for each class

– Parallelize and asynchronize the slab write I/Os to the flash memory

• Round-robin allocation of in-flash slab for load-balancing across channels

In-Memory Slab Buffer

Slab Management
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• Collapse multiple levels of indirect mapping to only one
– Prior mapping: KeySlabLBAPBA

– Current mapping: KeySlab (i.e., Flash Block)

• Benefits
– Removes the time overhead for lookup intermediate layers (Speed+)

– Only one single must-have in-memory hash table is needed (Cost-)

– On-device RAM space can be completely removed (or for other uses)
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• One single GC is driven directly by key-value cache system
– All slab writes are in units of blocks (no need for device-level GC)

– GC is directly triggered and controlled by application-level KVC

• Two GC policies
– Greedy GC: the least occupied slab is evicted to move minimum slots

– Quick clean: the LRU slab is immediately dropped recycling valid slots

– Adaptively used for different circumstances (busy or idle)

Target Slab

App-driven Garbage Collection
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Over-Provisioning Space Management
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• Dynamically tuning OPS space online
– Rationale – KVC is typically read-intensive and OPS can be small

– Goal – keep just enough OPS space (adaptive to intensity of writes)

• OPS management policies
– Heuristic method: An OPS window (WL and WH) to estimate size

• Low watermark hit – Trigger quick clean, raise the OPS window 

• High watermark hit – OPS is over-allocated, lower the OPS window 
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Preliminary Experiments
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• Implementation
– Key-value cache on Twitter’s Fatcache to fit hardward

– Libssd Library (621 lines of code in C)

• Experimental Setup
– Intel Xeon E-1225, 32GB Memory, 1TB Disk, Open-Channel SSD

– Ubuntu 14.04 LTS, Linux 3.17.8, Ext4 filesystem

• Hardware: Open-channel SSD
– A PCI-E based with 12 channel, and 192 LUNs

– Direct control to the device (via ioctl interface)

Experiments



SET – Throughput and Latency
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• SET Workloads: 40milliom requests of 1KB key/value pairs 

• Both set throughput/latency from our scheme are the best

Experiments
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Conclusion

• KV stores become critical as they are one of the most 
important building blocks in modern web infrastructures and 
high-performance data-intensive applications.

• We build a highly efficient flash-based cache system which 
enables three benefits, namely a unified single-level direct 
mapping, a cache-driven fine-grained garbage collection, and 
an adaptive over-provisioning scheme

• We are implementing a prototype on the Open-Channel SSD 
hardware and our preliminary results show that it is highly 
promising
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Conclusion



Thank You !
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GET – Throughput and Latency
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• GET performance is largely determined by the raw speed

• GET latencies are among the lowest in the set of SSDs

Our Scheme

Stock Fatcache
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Stock Fatcache



SET Latencies – A Zoom-in View
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• The direct control successfully removes high cost GC effects

• Quick clean removes long I/Os under high write pressure

Our Scheme Stock Fatchche + KingSpec



Block Erase Count
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• Trace collected with running Fatcache on Samsung SSD

• Block trace is replayed on MSR’s SSD simulator for erase count

• Our solution reduces erase count by 30%
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Effect of the In-memory Slab Buffer
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• 10x buffer size difference does not affect latency significantly

• A small (56MB) in-memory slab buffer is sufficient for use


