
Optimizing Flash-based Key-value Cache Systems

The 8th USENIX Workshop on Hot Topics in Storage and File Systems (HotStorage’16)

†Department of Computing, Hong Kong Polytechnic University

‡Computer Science & Engineering, Louisiana State University

Zhaoyan Shen†, Feng Chen‡, Yichen Jia‡, Zili Shao†



Key-value Information

1

• Key-value access is dominant in web services

– Many apps simply store and retrieve key-value pairs

– Key-value cache is the first line of defense
• Benefits: Improve throughput, reduce latency, reduce server load

– In-memory KV cache is popular (Memcache)

• High speed but has cost, power, capacity problem



Key-value Slabs (Flash LBA)

Log-Structured 
Logical Flash Space

Flash based Key-value Cache

2

+

Slab
(Slab, Slot)Key

Hash Index (Memory)

SHA-1(Key_1)

Key-value cache Flash SSD

• In-memory hash map to track key-to-value mapping

• Slabs are used in a log-structured way

• Updated value item written to a new location and old values recycled later 



Critical Issues

3

• Redundant mapping

• Double garbage collection

• Over-over-provisioning



Critical Issue 1: Redundant Mapping

4

• Redundant mapping at application- and FTL-level 
– KVC: An in-memory hash table (Key  Slab, Offset)

– FTL: An on-device page mapping table (LBA  PBA)

• Problems 
– Two mapping structures (unnecessarily) co-exist at two levels

– A significant waste of on-device DRAM space (e.g., 1GB for 1TB)
• The on-device DRAM buffer is costly, unreliable, and could be used for buffering.

SHA-1(Key)

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

Slab SpaceHash table

(1, 2)K1

Mapping 
Table

0
1
2
3

AAA, BBB
BBB,CCC
CCC,DDD
DDD,EEE

…
…

PBALBA

Critical Issues

KVC software Mapping FTL Mapping in hardware



Critical Issue 2: Double Garbage Collection

5

• Garbage collection (GC) at app- and FTL- levels
– KVC: Recycle deleted or changed key-value items

– FTL: Recycle trimmed or changed pages 

• Problems
– Semantic validity of a key-value entry is not seen at FTL

– Redundant data copy operation

SHA-1(Key)

Hash table

(1, 2)K1

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

PBASlab Space

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

0
1
2
3
4
5

LBA

CCC,DDD

Mapping 
Table

(2, 1) AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

CCC,DDD

FTL-level GCKVC-level GC

Critical Issues



Critical Issue 3: Over-over-provisioning

6

• Over-provisioning at FTL-level
– FTL has a portion (20-30%) of flash as Over-Provisioning Space (OPS)

– OPS space is invisible and unusable to the host applications 

• Problems
– OPS is reserved for dealing the worst-case situation, as a storage

– Over-over provisioning for Key-value caches
• Key-value caches are dominated by read (GET) traffic, not writes

– Key-value cache hit ratio is highly sensitive to usable cache size
• If 20-30% space can be released, the cache hit ratio can be greatly improved 

SHA-1(Key)

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

Slab SpaceHash table

(1, 2)K1

LBA

0
1
2
3

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

…
…

PBA

…
…

FFF,GGG
HHH,III
JJJ, KKK

Mapping 
Table

Unusable

Critical Issues



Semantic Gap Problem

7

Semantic Gap

• Fine-grained GC
• Key-to-value mapping
• Validity of slab entries

• Physical data layout on flash
• Direct flash memory control
• Proper mapping granularity

In the current SW/HW architecture, we can do little to 
address these three issues. 

Key-value cache Flash SSD

Critical Issues



Optimization Goals

8

• Redundant mapping  Single mapping

• Double garbage collection  App-driven GC

• Over-over-provisioning  Dynamic OPS



Design Overview

9

• An enhanced flash-aware key-value cache

• A thin intermediate library layer (libssd)

• A specialized flash memory PCI-E SSD hardware

Flash SSD

Garbage 
Collection

Page
Mapping

Bad Block 
Mgm.

Flash 
Operations

Wear
Leveling

OPS
Mgm.

Operating Systems

Page Cache
Device
Driver

I/O
Scheduling

Key-value Cache

K/V 
Mapping

Slab Mgm.
Cache
Mgm.

Open-channel SSD

Flash Operations

Operating Systems

Page Cache
Device
Driver

I/O
Scheduling

Library (libssd)

Operation
Conversion

Slab/Flash
Translation

Bad Block 
Mgm.

Key-value Cache

Key/Slab
Mapping

KVC-driven
GC

OPS
Management

Slab Manager Cache Manager



An Enhanced Flash-aware Key-value Cache

10

• Slab management

• Unified direct mapping

• Garbage collection

• OPS management

Key-value Cache



• Our choice – Directly use a flash block as a slab (8MB)

• Slab buffer: An in-memory slab maintained for each class

– Parallelize and asynchronize the slab write I/Os to the flash memory

• Round-robin allocation of in-flash slab for load-balancing across channels

In-Memory Slab Buffer

Slab Management

11

Class i Class i+1 Class nClass i+2

Key/Value

Channel #0 Channel #1 Channel #2 Channel #3 Channel #4

Key-value Cache

Flash
SSD



SHA-1(Key)

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

Slab SpaceHash table

(1, 2)K1

Mapping 
Table

0
1
2
3

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

…
…

Flash Memory

Unified Direct Mapping

12

• Collapse multiple levels of indirect mapping to only one
– Prior mapping: KeySlabLBAPBA

– Current mapping: KeySlab (i.e., Flash Block)

• Benefits
– Removes the time overhead for lookup intermediate layers (Speed+)

– Only one single must-have in-memory hash table is needed (Cost-)

– On-device RAM space can be completely removed (or for other uses)

Key-value Cache

SHA-1(Key)

Hash table

(Slab, Offset)K1

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

Flash Memory

…
…
…
…

Slab #1

Slab #2

CDC, CDC



• One single GC is driven directly by key-value cache system
– All slab writes are in units of blocks (no need for device-level GC)

– GC is directly triggered and controlled by application-level KVC

• Two GC policies
– Greedy GC: the least occupied slab is evicted to move minimum slots

– Quick clean: the LRU slab is immediately dropped recycling valid slots

– Adaptively used for different circumstances (busy or idle)

Target Slab

App-driven Garbage Collection

13

Key-value Cache

Greedy GC

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

copy
CCC,DDD

Victim Slab

AAA,BBB
BBB,CCC
CCC,DDD
DDD,EEE

Quick Clean

eee,fff
ccc,ddd
bbb,ccc
aaa,bbb

LRU Slab MRU Slab

333,444
555,666
777,888
888,999



Over-Provisioning Space Management

14

• Dynamically tuning OPS space online
– Rationale – KVC is typically read-intensive and OPS can be small

– Goal – keep just enough OPS space (adaptive to intensity of writes)

• OPS management policies
– Heuristic method: An OPS window (WL and WH) to estimate size

• Low watermark hit – Trigger quick clean, raise the OPS window 

• High watermark hit – OPS is over-allocated, lower the OPS window 

Key-value Cache

O
P

S

Time

WH

WL

Max OSP

Quick clean initiated



Preliminary Experiments

15

• Implementation
– Key-value cache on Twitter’s Fatcache to fit hardward

– Libssd Library (621 lines of code in C)

• Experimental Setup
– Intel Xeon E-1225, 32GB Memory, 1TB Disk, Open-Channel SSD

– Ubuntu 14.04 LTS, Linux 3.17.8, Ext4 filesystem

• Hardware: Open-channel SSD
– A PCI-E based with 12 channel, and 192 LUNs

– Direct control to the device (via ioctl interface)

Experiments



SET – Throughput and Latency

16

• SET Workloads: 40milliom requests of 1KB key/value pairs 

• Both set throughput/latency from our scheme are the best

Experiments

Our Scheme

Stock Fatcache

Our Scheme Stock Fatcache



Conclusion

• KV stores become critical as they are one of the most 
important building blocks in modern web infrastructures and 
high-performance data-intensive applications.

• We build a highly efficient flash-based cache system which 
enables three benefits, namely a unified single-level direct 
mapping, a cache-driven fine-grained garbage collection, and 
an adaptive over-provisioning scheme

• We are implementing a prototype on the Open-Channel SSD 
hardware and our preliminary results show that it is highly 
promising

17

Conclusion



Thank You !



19

Backup Slides



GET – Throughput and Latency

20

• GET performance is largely determined by the raw speed

• GET latencies are among the lowest in the set of SSDs

Our Scheme

Stock Fatcache

Our Scheme
Stock Fatcache



SET Latencies – A Zoom-in View

21

• The direct control successfully removes high cost GC effects

• Quick clean removes long I/Os under high write pressure

Our Scheme Stock Fatchche + KingSpec



Block Erase Count

22

• Trace collected with running Fatcache on Samsung SSD

• Block trace is replayed on MSR’s SSD simulator for erase count

• Our solution reduces erase count by 30%

0

500

1000

1500

2000

2500

3000

3500

1 2 4 6 8

Erase Count

SSDSim Open-channel SSD

Quick Clean kicks in



Effect of the In-memory Slab Buffer

23

• 10x buffer size difference does not affect latency significantly

• A small (56MB) in-memory slab buffer is sufficient for use


