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Key-value Information

e Key-value access is dominant in web services
— Many apps simply store and retrieve key-value pairs
— Key-value cache is the first line of defense

* Benefits: Improve throughput, reduce latency, reduce server load
— In-memory KV cache is popular (Memcache)
* High speed but has cost, power, capacity problem
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Flash based Key-value Cache

Key-value cache Flash SSD

SHA-1(Key 1) —>| key | (Slab,Slot) ®-------——______________

Hash Index (Memory) Key-value Slabs (Flash LBA)

* In-memory hash map to track key-to-value mapping
e Slabs are used in a log-structured way
* Updated value item written to a new location and old values recycled later



Critical Issues

 Redundant mapping
* Double garbage collection

* Over-over-provisioning




Critical Issues

Critical Issue 1: Redundant Mapping

 Redundant mapping at application- and FTL-level
— KVC: An in-memory hash table (Key = Slab, Offset)
— FTL: An on-device page mapping table (LBA - PBA)

* Problems

— Two mapping structures (unnecessarily) co-exist at two levels
— A ssignificant waste of on-device DRAM space (e.g., 1GB for 1TB)

* The on-device DRAM buffer is costly, unreliable, and could be used for buffering.
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Critical Issues

Critical Issue 2: Double Garbage Collection

* Garbage collection (GC) at app- and FTL- levels
— KVC: Recycle deleted or changed key-value items
— FTL: Recycle trimmed or changed pages

* Problems

— Semantic validity of a key-value entry is not seen at FTL
— Redundant data copy operation
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Critical Issues

Critical Issue 3: Over-over-provisioning

* Over-provisioning at FTL-level
— FTL has a portion (20-30%) of flash as Over-Provisioning Space (OPS)
— OPS space is invisible and unusable to the host applications

* Problems
— OPS is reserved for dealing the worst-case situation, as a storage

— QOver-over provisioning for Key-value caches

» Key-value caches are dominated by read (GET) traffic, not writes

— Key-value cache hit ratio is highly sensitive to usable cache size

* |f 20-30% space can be released, the cache hit ratio can be greatly improved
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Critical Issues

Semantic Gap Problem

Key-value cache Flash SSD

-

Semantic Gap > \/

* Fine-grained GC * Physical data layout on flash
* Key-to-value mapping e Direct flash memory control
* Validity of slab entries * Proper mapping granularity

In the current SW/HW architecture, we can do little to
address these three issues.




Optimization Goals

* Redundant mapping =2 Single mapping
* Double garbage collection =2 App-driven GC

* Over-over-provisioning > Dynamic OPS




Design Overview

Key-value Cache
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Flash Operations

* An enhanced flash-aware key-value cache
* Athin intermediate library layer (11ibssd)

* A specialized flash memory PCI-E SSD hardware




Key-value Cache

An Enhanced Flash-aware Key-value Cache

* Slab management
* Unified direct mapping
* Garbage collection

* OPS management




Key-value Cache

Slab Management

* Our choice — Directly use a flash block as a slab (8MB)

e Slab buffer: An in-memory slab maintained for each class
— Parallelize and asynchronize the slab write I/Os to the flash memory

* Round-robin allocation of in-flash slab for load-balancing across channels

Key/Va|ue — In-Memory Slab Buffer
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Key-value Cache

Unified Direct Mapping

* Collapse multiple levels of indirect mapping to only one
— Prior mapping: Key—>Slab—>LBA—>PBA
— Current mapping: Key—>Slab (i.e., Flash Block)

 Benefits

— Removes the time overhead for lookup intermediate layers (Speed+)
— Only one single must-have in-memory hash table is needed (Cost-)

— On-device RAM space can be completely removed (or for other uses)
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Key-value Cache

App-driven Garbage Collection

* One single GCis driven directly by key-value cache system
— All slab writes are in units of blocks (no need for device-level GC)
— GCis directly triggered and controlled by application-level KVC

 Two GC policies
— Greedy GC: the least occupied slab is evicted to move minimum slots

— Quick clean: the LRU slab is immediately dropped recycling valid slots
— Adaptively used for different circumstances (busy or idle)
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Key-value Cache

Over-Provisioning Space Management

* Dynamically tuning OPS space online

— Rationale — KVC is typically read-intensive and OPS can be small

— Goal — keep just enough OPS space (adaptive to intensity of writes)
 OPS management policies

— Heuristic method: An OPS window (W, and W,,) to estimate size

* Low watermark hit — Trigger quick clean, raise the OPS window
e High watermark hit — OPS is over-allocated, lower the OPS window
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Preliminary Experiments

* Implementation
— Key-value cache on Twitter’s Fatcache to fit hardward
— Libssd Library (621 lines of code in C)

* Experimental Setup
— Intel Xeon E-1225, 32GB Memory, 1TB Disk, Open-Channel SSD
— Ubuntu 14.04 LTS, Linux 3.17.8, Ext4 filesystem

 Hardware: Open-channel SSD

— A PCI-E based with 12 channel, and 192 LUNs
— Direct control to the device (via 1oct1 interface) ;

Experiments



Experiments

SET — Throughput and Latency
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» SET Workloads: 40milliom requests of 1KB key/value pairs
* Both set throughput/latency from our scheme are the best



Conclusion

Conclusion

e KV stores become critical as they are one of the most
important building blocks in modern web infrastructures and
high-performance data-intensive applications.

 We build a highly efficient flash-based cache system which
enables three benefits, namely a unified single-level direct
mapping, a cache-driven fine-grained garbage collection, and
an adaptive over-provisioning scheme

* We are implementing a prototype on the Open-Channel SSD
hardware and our preliminary results show that it is highly
promising
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GET — Throughput and Latency
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* GET performance is largely determined by the raw speed
* GET latencies are among the lowest in the set of SSDs



SET Latencies — A Zoom-in View
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* The direct control successfully removes high cost GC effects
* Quick clean removes long I/Os under high write pressure



Block Erase Count

Erase Count
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* Trace collected with running Fatcache on Samsung SSD
* Block trace is replayed on MSR’s SSD simulator for erase count
e Qur solution reduces erase count by 30%
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Effect of the In-memory Slab Buffer
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* 10x buffer size difference does not affect latency significantly
* A small (56MB) in-memory slab buffer is sufficient for use



