

ZEA, A Data Management Approach for SMR

Adam Manzanares

Co-Authors

- Western Digital Research
 - Cyril Guyot, Damien Le Moal, Zvonimir Bandic
- University of California, Santa Cruz
 - Noah Watkins, Carlos Maltzahn

Why SMR ?

HDDs are not going away

- Exponential growth of data still exists
- \$/TB vs. Flash is still much lower
- We want to continue this trend!
- Traditional Recording (PMR) is reaching scalability limits
 - SMR is a density enhancing technology being shipped right now.
- Future recording technologies may behave like SMR
 - Write constraint similarities
 - HAMR

Flavors of SMR

SMR Constraint

- Writes must be sequential to avoid data loss

• Drive Managed

- Transparent to the user
- Comes at the cost of predictability and additional drive resources

Host Aware

- Host is aware of SMR working model
- If user does something "wrong" the drive will fix the problem internally

Host Managed

- Host is aware of SMR working model
- If user does something "wrong" the drive will reject the IO request

SMR Drive Device Model

- New SCSI standard Zoned Block Commands (ZBC)
 - SATA equivalent ZAC
- Drive described by zones and their restrictions

Туре	Write Restriction	Intended Use	Con	Abbreviation
Conventional	None	In-place updates	Increased Resources	CZ
Sequential Preferred	None	Mostly sequential writes	Variable Performance	SPZ
Sequential Required	Sequential Write	Only sequential writes		SRZ

• Our user space library (libzbc) queries zone information from the drive

– https://github.com/hgst/libzbc

Why Host Managed SMR ?

• We are chasing predictability

- Large systems with complex data flows
 - Demand latency windows that are relatively tight from storage devices
 - Translates into latency guarantees from the larger system

• Drive managed HDDs

- When is GC triggered
- How long does GC take

Host Aware HDDs

- Seem ok if you do the "right" thing
- Degrade to drive managed when you don't

Host Managed

- Complexity and variance of drive internalized schemes are now gone

Host Managed SMR seems great, but ...

• All of these layers must be SMR compatible

- Any IO reordering causes a problem
 - Must not happen at any point between the user and device

• What about my new SMR FS?

- What is your GC policy?
- Is it tunable?
- Does your FS introduce latency at your discretion?
- What about my new KV that is SMR compatible?
 - See above
 - In addition, is it built on top of a file system?

Created by Werne

What Did We Do?

- Introduce a zone and block based extent allocator [ZEA]
- Write Logical Extent [Zone Block Address] – Return Drive LBA
- Read Extent [Logical Block Address]
 - Return data if extent is valid
- Iterators over extent metadata
 - Allows one to build ZBA -> LBA mapping

MAG	CS	LBA	SZ	ZBA	BP	BP
(32)	(32)	(16)	(16)	(64)	(16)	(16)

Per Write Metadata

ZEA Performance vs. Block Device

ZEA Is Just An Extent Allocator, What Next ?

- ZEA + LevelDB
- LevelDB is KV store library that is widely used
 - LevelDB Backend API is good for SMR
 - Write File Append Only, Read Randomly, Create & Delete Files, Flat Directory
 - Lets Build a Simple FS compatible with LevelDB

ZEA + LevelDB Architecture

ZEA + LevelDB Performance

Lessons Learned

• ZEA is a lightweight abstraction

- Hides sequential write constraint from application
- Low overhead vs. a block device when extent size is reasonable
- Provides addressing flexibility to application
 - Useful for GC
- LevelDB integration opens up usability of Host Managed SMR HDD
- Unfortunately LevelDB not so great for large objects
 - Ideal Use case for SMR drive would be large static blobs

What Is Left ?

- What is a "good" interface above ZEA
- Garbage collection policies
 - When and How
- How to use multiple zones efficiently
 - Allocation
 - Garbage collection

Thanks for listening

SanDisk[•]

adam.manzanares@hgst.com

©2016 Western Digital Corporation or affiliates. All rights reserved.