HotStorage ‘16
June 20, 2016

NVMeDirect: A User-Space /0 Framework
for Application-specific Optimization on NVMe SSD

Hyeong-Jun Kim, Jin-Soo Kim
Sungkyunkwan University
Young-Sik Lee
KAIST

FIC SUNGKYUNKWAN
8UNI\/I:RSIIY(SKI<LLIJ) KAIST

Evolution of storage device

~1/1000

DRAM
nanoseconds

~1/1000

3D XPoint™
10s of nanoseconds

NAND
10s of microseconds

HDD
10s of milliseconds

Evolution of storage I/O stack

User Apps

USER
KERNEL

VFS/File System

!

Block Layer

!

Request Queue

!

SCSI XLAT

!

SAS Driver

P

HDD (~10ms)

User Apps

;

VFS/File System

!

Block Layer

Request Queue

Optimized Stack

SCSI XLAT

!

SAS Driver

SAS SSD (~150s)

User Apps

I

VFS/File System

!

Block Layer

A

Minimized Stack

v

NVMe Driver

NVMe SSD (<100us)

Previous a Pproac hes - Optimizing the kemnel storage stack

e Use of for the fast I/O completion [Yang et al. FAST 2012]

* Optimization of a

[Shin et al. ATC 2014]

* Reducing the translation overhead between abstraction layers

* Optimizations to of fast storage devices

[Yu et al. ACM TOCS 2014]

* Polling, request merging, double buffering and reducing context switches

Limitations - Optimizing the kernel storage stack

e Kernel to provide an abstraction layer
* Kernel that favors a certain application
* Updating kernel to port application-

specific optimizations

Previous a Pproac hesS -Directaccess to storage device

e Direct access to the [Caulfield et al. ASPLOS 2012]

— Special hardware is required

* Direct access to
* Intel Storage Performance Development Kit — SPDK (Sep 2015)
* Micron Userspace NVMe driver project — UNVMe (Feb 2016)
— Device dedicated to a single user process
— Provides just simple read & write interface based on polling

— Not sufficient to port existing applications

Our Approach: NVMeDirect

User Apps
USER
KERNEL
VFS/File System

!

Block Layer

NVMe Driver

H/W I

NVMe SSD

User Apps

NVMeDirect Framework
NVMe I/O Queue

A

control

data

A\ 4

NVMe Driver

* Permission management
* Queue management

NVMe SSD

NVMeDirect Overview

* Allows user-space applications to
without any hardware modifications

* Achieves high performance by avoiding storage stack overhead

* Supports
 Applications can be optimized according to their I/O characteristics
 Selective use of block cache, I/O scheduler, or I/O completion thread
* Asynchronous I/O vs. Synchronous I/O
o Buffered I/O vs. Direct 1/0O

* Designed to maximize performance for trusted applications
» Storage appliance, private clouds, etc.

User

Kernel

HW

NVMeDirect Design

>
S
()
S
Q0
=
]
(9]
(V)
o
(]
()
=
>
2

2

@ Admin Tool

A

NVMeDirect API

(7]

= ¥ v Block Cache
s Handle Handle

L A A

L

= I/O Scheduler
(7]

3 v v

S /0

g . N Lo t | Completion
= R Thread
 ERSRERTAE P

e o Ve |8

-

NVMe Controller

* NVMeDirect Management
e Kernel driver

e Admin tool

* NVMeDirect I/O
* |/O Handles

* User-space I/O Queues

* NVMeDirect I/O Framework
* Block Cache
* |/O Scheduler
* |/O Completion Thread

NVMeDirect Design — Queues and Handles

* User-space I/0O Queues
* Memory-mapped address space for NVMe I/O Queues
created in the kernel address space
* 1/0 Handles
* Used to send I/O requests to NVMe I/O Queue(s)
* A thread can create one or more I/O Handles

e Each Handle can be configured to use different features :
caching, I/0 scheduling, I/0O completion, etc.

0
s
& | Handle Handle Handle [| Handle
T
e | N N\
)

1:1 1:N N:1
s | [N\ N
o Ya» Yar' Yo Yap’
=

NVMeDirect Design - APIs

struct nvmed* nvmed_open(char*);

int nvmed close(struct nvmed*);

struct nvmed_gqueue®* nvmed_create_queue(struct nvmed*);

int nvmed_destroy_queue(struct nvmed_queue*);

struct nvmed_handle* nvmed_create_handle(struct nvmed_queue*);
struct nvmed_handle* nvmed_create_mq_handle(struct nvmed_queue**);
int nvmed_destroy handle(struct nvmed_handle*);

int nvmed_set_param(struct nvmed_handle*, int, int);

void* nvmed_get buffer(struct nvmed_handle* unsigned int);

int nvmed_put_buffer(void*);

off_t nvmed_lseek(struct nvmed_handle*, off t, int);

ssize t nvmed read(struct nvmed_handle*, void*, unsigned int);
ssize t nvmed write(struct nvmed handle*, void*, unsigned int);
int nvmed flush(struct nvmed_handle®);

int nvmed discard(struct nvmed_handle*, off t, size t);

Example of /O using NVMeDirect

k)

Admin Tool
/ NFI\ReDureci API
o ' \
1E Vs Block Cache
d| & Ean&le
o) I 4
o Elle |
S ‘g = \- I/O Scheduler
~ (7
% g \{r
E 2 1/O
= | O : ! Completion
g ' Ei‘ Thread
!\\!: .
T % : 0
) | nm = o
£ 23 NI >3
g B3 e &
D :

NVMe Controller

1) Open device

nvmed = (“/proc/nvmed/nl1”);

2) Create queue

queue = (nvmed) ;
3) Create handle

handle = (queue);
4) Perform 1/0

size = (handle, buf, len);

5) Configure Handle

ret =
(handle, BUFFERED IO, TRUE);

Advantages of NVMeDirect

Enables high

* Low latency and high throughput

Easy to

* Weighted queue, multi-stream, etc.

Easy to

Provides
update

with legacy kernel 1/0

Evaluation
* Implementation on the Linux kernel 4.3.3

* Experimental setup
* Ubuntu 14.04 LTS
e 3.3GHz Intel Core i7 CPU (6 cores) & 64GB of DRAM
* Intel 750 Series 400GB NVMe SSD

* Comparison with
* Kernel1/O
* SPDK
* NVMeDirect

Baseline performance

* Asynchronous random |I/O performance using FIO

1

Random Read

300
250
200
150
100

50

1
2 4 8 16 3 64

Queue Depth

Random Write

1 2 4

® Kernel /O = SPDK m NVMeDirect

64

Impact of the Polling Period

* Polling is not efficient on bandwidth sensitive workload
due to the significant increase in the CPU load

 Significant performance degradation occurs in a certain polling period

CPU Utilization Normalized Read IOPS

4 -e-4KB 8KB —16KB™

9 1 : -0—0—0—0—0—.—0—0—.—.—-.—..—’ 100?
T 0.8 | 180 =
& 0.6 60 o
© —
© 0.4 40 J
s 0.2 20 g
Z S

O O O O © O O O O
L S N AN SN SN SN O\

Polling Period (us)
e Control Polling Period dynamically based on I/O size or
hints from applications

Latency-sensitive Application

* Redis: in-memory data structure store
* Logging every operation for persistency

* Logs are 10 to 100 bytes in size

 Difficult to run on SPDK without significant code modification

@ Redis

NVMeDirect API

(7]
% Block Cache
s Handle
T
5 o t
5 L= I/O Scheduler
|
51| &
e = /
| & /0
§ of Completion
5 g Thread

Latency-sensitive Application

* Using workload-A in YCSB on Redis
* Update-heavy workload with Zipf distribution

60,000 250
15%
50,000 200
o —
g 40,000 2 150
S >
< 30,000 =
P £ 100
© 20,000 -
10,000 20
0 0
Throughput Read Update

W Kernel |/O ™ NVMeDirect W Kernel |/O ™ NVMeDirect

Differentiated I/O Service

* NVMeDirect supports
* Prioritized 1/0 without a weighted round-robin scheduler
* Using flexible binding between Handles and Queues

e Sharing a single Queue with multiple Handles

9 OO

NVMeDirect AP

> (%] \ 4 \ 4 \ 4 \ 4

S 2 Block Cache

g Q7T Handle | [Handle || Handle || Handle

S |

S I/O Scheduler

T 1 7

— 0

(=) L)

§ Q 3 I/0 Completion
)

S Thread

S g

Differentiated 1/0O Service

* One prioritized thread with a dedicated queue,
Three threads with a shared queue

* Each thread performs 4KB random write
100,000
80,000

60,000

40,000
20,000
0

NVMeDirect
Kernel 1/O with Dedicated Queue

4KB I0PS

Conclusion

* NVMeDirect

* First full framework for
I/0O in the user-space based on stock NVMe devices

* Can be easily applied to many applications
» Useful for emerging storage devices, e.g. 3D XPoint™, etc.

* Available as open-source at
https://github.com/nvmedirect (July 2016)

* Future work
* User-level file systems
* Porting diverse data-intensive applications over NVMeDirect
* Protecting the system from illegal access

Thank you

hjkim@csl.skku.edu

