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Evolution of storage device

~1/1000

DRAM
nanoseconds

~1/1000

3D XPoint™
10s of nanoseconds

NAND
10s of microseconds

HDD
10s of milliseconds



Evolution of storage I/O stack
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Previous a Pproac hes - Optimizing the kemnel storage stack

e Use of for the fast I/O completion [Yang et al. FAST 2012]

* Optimization of a

[Shin et al. ATC 2014]

* Reducing the translation overhead between abstraction layers

* Optimizations to of fast storage devices

[Yu et al. ACM TOCS 2014]

* Polling, request merging, double buffering and reducing context switches



Limitations - Optimizing the kernel storage stack

e Kernel to provide an abstraction layer
* Kernel that favors a certain application
* Updating kernel to port application-

specific optimizations



Previous a Pproac hesS -Directaccess to storage device

e Direct access to the [Caulfield et al. ASPLOS 2012]

— Special hardware is required

* Direct access to
* Intel Storage Performance Development Kit — SPDK (Sep 2015)
* Micron Userspace NVMe driver project — UNVMe (Feb 2016)
— Device dedicated to a single user process
— Provides just simple read & write interface based on polling

— Not sufficient to port existing applications



Our Approach: NVMeDirect
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NVMeDirect Overview

* Allows user-space applications to
without any hardware modifications

* Achieves high performance by avoiding storage stack overhead

* Supports
 Applications can be optimized according to their I/O characteristics
 Selective use of block cache, I/O scheduler, or I/O completion thread
* Asynchronous I/O vs. Synchronous I/O
o Buffered I/O vs. Direct 1/0O

* Designed to maximize performance for trusted applications
» Storage appliance, private clouds, etc.
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NVMe Controller

* NVMeDirect Management
e Kernel driver

e Admin tool

* NVMeDirect I/O
* |/O Handles

* User-space I/O Queues

* NVMeDirect I/O Framework
* Block Cache
* |/O Scheduler
* |/O Completion Thread



NVMeDirect Design — Queues and Handles

* User-space I/0O Queues
* Memory-mapped address space for NVMe I/O Queues
created in the kernel address space
* 1/0 Handles
* Used to send I/O requests to NVMe I/O Queue(s)
* A thread can create one or more I/O Handles

e Each Handle can be configured to use different features :
caching, I/0 scheduling, I/0O completion, etc.
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NVMeDirect Design - APIs

struct nvmed* nvmed_open(char*);

int nvmed close(struct nvmed*);

struct nvmed_gqueue®* nvmed_create_queue(struct nvmed*);

int nvmed_destroy_queue(struct nvmed_queue*);

struct nvmed_handle* nvmed_create_handle(struct nvmed_queue*);
struct nvmed_handle* nvmed_create_mq_handle(struct nvmed_queue**);
int nvmed_destroy handle(struct nvmed_handle*);

int nvmed_set_param(struct nvmed_handle*, int, int);

void* nvmed_get buffer(struct nvmed_handle* unsigned int);

int nvmed_put_buffer(void*);

off_t nvmed_lseek(struct nvmed_handle*, off t, int);

ssize t nvmed read(struct nvmed_handle*, void*, unsigned int);
ssize t nvmed write(struct nvmed handle*, void*, unsigned int);
int nvmed flush(struct nvmed_handle®);

int nvmed discard(struct nvmed_handle*, off t, size t);




Example of /O using NVMeDirect
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NVMe Controller

1) Open device

nvmed = (“/proc/nvmed/nl1”);

2) Create queue

queue = (nvmed) ;
3) Create handle

handle = (queue);
4) Perform 1/0

size = (handle, buf, len);

5) Configure Handle

ret =
(handle, BUFFERED IO, TRUE);



Advantages of NVMeDirect

Enables high

* Low latency and high throughput

Easy to

* Weighted queue, multi-stream, etc.

Easy to

Provides
update

with legacy kernel 1/0



Evaluation
* Implementation on the Linux kernel 4.3.3

* Experimental setup
* Ubuntu 14.04 LTS
e 3.3GHz Intel Core i7 CPU (6 cores) & 64GB of DRAM
* Intel 750 Series 400GB NVMe SSD

* Comparison with
* Kernel1/O
* SPDK
* NVMeDirect



Baseline performance

* Asynchronous random |I/O performance using FIO
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Impact of the Polling Period

* Polling is not efficient on bandwidth sensitive workload
due to the significant increase in the CPU load

 Significant performance degradation occurs in a certain polling period

CPU Utilization Normalized Read IOPS
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e Control Polling Period dynamically based on I/O size or
hints from applications



Latency-sensitive Application

* Redis: in-memory data structure store
* Logging every operation for persistency

* Logs are 10 to 100 bytes in size

 Difficult to run on SPDK without significant code modification
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Latency-sensitive Application

* Using workload-A in YCSB on Redis
* Update-heavy workload with Zipf distribution
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Differentiated I/O Service

* NVMeDirect supports
* Prioritized 1/0 without a weighted round-robin scheduler
* Using flexible binding between Handles and Queues

e Sharing a single Queue with multiple Handles
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Differentiated 1/0O Service

* One prioritized thread with a dedicated queue,
Three threads with a shared queue

* Each thread performs 4KB random write
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Conclusion

* NVMeDirect

* First full framework for
I/0O in the user-space based on stock NVMe devices

* Can be easily applied to many applications
» Useful for emerging storage devices, e.g. 3D XPoint™, etc.

* Available as open-source at
https://github.com/nvmedirect (July 2016)

* Future work
* User-level file systems
* Porting diverse data-intensive applications over NVMeDirect
* Protecting the system from illegal access
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