
Finding Consistency in an Inconsistent World:
Towards Deep Semantic Understanding of

Scale-out Distributed Databases

Neville Carvalho, Hyojun Kim, Maohua Lu, Prasenjit Sarkar, Rohit Shekhar, Tarun Thakur, Pin Zhou
DATOS IO

Remzi H. Arpaci-Dusseau
University of Wisconsin-Madison

USENIX HotStorage2016

NECST (Next-generation Eventually Consistent STorage systems)

2

Why?

Big Data
Internet Scale App.

(IoT, Mobile)

Scale and availability is more
important than ACID

Problem

How to build efficient backup and restore tools for
NECST (Next-generation Eventually Consistent STorage systems)

3

Does NECST require backup?

● NECST systems are highly available
○ Data replication, Multi-DC support

● Enterprise organizations have a fundamental need to restore and access
particular versions of data from different points in time

○ Operational errors (a.k.a. “Fat fingers”)
○ Operation historian (government regulations)

4

Why NECST system backup is difficult

5

Single node snapshot vs. Distributed system snapshot

Orchestration is needed for backup and restore

6

plus, failure handling
plus, topology change support

There are bigger problems

7

Example: existing backup solution for Cassandra

● Per-node backup & recovery
○ The state of each node can be

captured by snapshot command

● Issues
○ Inconsistent backup
○ Topology change
○ Redundant data Backup Restore

Backup Restore Backup Restore

Row Key C C C

Replication

8

Record

Problems of the “per-node” backup approach

● Backup space waste problem

○ Replicated data (normally 3 copies) consumes more space (3x) in a backup

(if backup files are uploaded to an object store like Swift, space consumption will be 9x)

● Inconsistency problem
○ Creating a consistent snapshot from an eventually consistent DB system

○ Repair operation is very expensive

(imagine running fsck for multiple file systems having terabytes of data)

9

Goals

1. Quorum reconciliation (consistency)

2. Redundant-copy detection (space efficiency, deduplication)

3. Configuration-oblivious backup and restore (topology change)

4. Orchestrated backup and restore with failure handling

10

11

Deduplication:
Space Efficient Backup

Picture source: https://citrixblogger.
org/2008/05/25/deduplication/

Deduplication

Replace redundant backup data with pointers to shared copy

● Source vs. Target deduplication
● Inline vs. Post-processing deduplication
● File vs. Block level deduplication
● Global deduplication

Will existing deduplication solutions work for Cassandra?

12

Cassandra: Replica exist across nodes

13

Cassandra

Application Application Application

Block device

File system

DB node

Block device

File system

DB node

Block device

File system

DB node

Block device

File system

DB node

Block device

File system

DB node

Distributed system based on shared nothing storage

Cassandra: Row based replication + Compression

K1

K4

K5

K1

K2

K5

K1

K2

K3

K2

K3

K4

K3

K4

K5

DB Node 1 DB Node 2 DB Node 3 DB Node 4 DB Node 5

Very low chance to find identical chunks from Cassandra data files

15

Consistent
Backup

Source: Internet

Levels of backup consistency

● Inconsistent backup
○ Simple file copy operation

● Crash-consistent backup
○ Backup’s data saved within the same moment of time

○ Memory content and pending I/O will be lost

● Application-consistent backup
○ Capture all data in memory and all transactions in process
○ Quiesce the database application, flush its memory cache, complete all its writes in order and

then perform the backup

16

Consistent status

17

K1

K4

K5

K1

K2

K5

K1

K2

K3

K2

K3

K4

K3

K4

K5

DB Node 1 DB Node 2 DB Node 3 DB Node 4 DB Node 5

K1

K4

K5

K1

K2

K5

K1

K2

K3

K2

K3

K4

K3

K4

K5

DB Node 1 DB Node 2 DB Node 3 DB Node 4 DB Node 5

Inconsistent status

K1

K4

K5

K1

K2

K5

K1

K2

K3

K2

K3

K4

K3

K4

K5

DB Node 1 DB Node 2 DB Node 3 DB Node 4 DB Node 5

K1 K2 K3 K4 K5

Space efficient consistent version

18

Inconsistent backup

Space efficient consistent backup

Depends on user defined backup-policy

Two key building blocks

● Deep Semantic Understanding

● Efficient data processing algorithm

19

Conclusions

● NECST system is becoming important component of the enterprise
datacenter.

● NECST backup problem has been introduced: three key parts
○ Backup and restore orchestration
○ Quorum reconciliation for consistent backup

○ Redundant copy detection for space-efficient backup

● Our mission:
NECST storage management is as easy and effective tomorrow as classic
storage management is today

20

http://datos.io

Email: info@datos.io

Thank you

http://datos.io
http://datos.io
mailto:info@datos.io

