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NECST (Next-generation Eventually Consistent STorage systems) 
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Why?

Big Data
Internet Scale App.

(IoT, Mobile)

Scale and availability is more 
important than ACID



Problem

How to build efficient backup and restore tools for 
NECST (Next-generation Eventually Consistent STorage systems)
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Does NECST require backup?

● NECST systems are highly available
○ Data replication, Multi-DC support 

● Enterprise organizations have a fundamental need to restore and access 
particular versions of data from different points in time

○ Operational errors (a.k.a. “Fat fingers”)
○ Operation historian (government regulations)
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Why NECST system backup is difficult
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Single node snapshot vs. Distributed system snapshot 



Orchestration is needed for backup and restore
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plus, failure handling
plus, topology change support 



There are bigger problems 

7



Example: existing backup solution for Cassandra

● Per-node backup & recovery
○ The state of each node can be 

captured by snapshot command

● Issues
○ Inconsistent backup
○ Topology change
○ Redundant data Backup Restore

Backup Restore Backup Restore

Row Key C C C

Replication
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Record



Problems of the “per-node” backup approach

● Backup space waste problem

○ Replicated data (normally 3 copies) consumes more space (3x) in a backup

(if backup files are uploaded to an object store like Swift, space consumption will be 9x)

● Inconsistency problem
○ Creating a consistent snapshot from an eventually consistent DB system

○ Repair operation is very expensive

(imagine running fsck for multiple file systems having terabytes of data)
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Goals

1. Quorum reconciliation (consistency)

2. Redundant-copy detection (space efficiency, deduplication)

3. Configuration-oblivious backup and restore (topology change)

4. Orchestrated backup and restore with failure handling
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Deduplication:
Space Efficient Backup

Picture source: https://citrixblogger.
org/2008/05/25/deduplication/



Deduplication 

Replace redundant backup data with pointers to shared copy

● Source vs. Target deduplication
● Inline vs. Post-processing deduplication
● File vs. Block level deduplication 
● Global deduplication

Will existing deduplication solutions work for Cassandra?
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Cassandra: Replica exist across nodes
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Cassandra
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Cassandra: Row based replication + Compression
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Consistent 
Backup

Source: Internet



Levels of backup consistency

● Inconsistent backup
○ Simple file copy operation

● Crash-consistent backup
○ Backup’s data saved within the same moment of time

○ Memory content and pending I/O will be lost

● Application-consistent backup
○ Capture all data in memory and all transactions in process
○ Quiesce the database application, flush its memory cache, complete all its writes in order and 

then perform the backup
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Consistent status 
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Inconsistent backup 

Space efficient consistent backup 

Depends on user defined backup-policy



Two key building blocks

● Deep Semantic Understanding 

● Efficient data processing algorithm

19



Conclusions

● NECST system is becoming important component of the enterprise 
datacenter.

● NECST backup problem has been introduced: three key parts
○ Backup and restore orchestration
○ Quorum reconciliation for consistent backup

○ Redundant copy detection for space-efficient backup

● Our mission: 
NECST storage management is as easy and effective tomorrow as classic 
storage management is today
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http://datos.io

Email:  info@datos.io 

Thank you

http://datos.io
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