Ending Monolithic Apps for Connected Devices

Rayman Preet Singh (Univ. of Waterloo), Chenguang Shen (UCLA), Amar Phanishayee, Aman Kansal, Ratul Mahajan (Microsoft Research)

Growth in Sensing Devices

In 2017, **90 million** homes with sensing devices https://www.abiresearch.com/press

Homes **50 billion** connected *sensing devices* by 2020 []es In 2008, #sensing devices > #people https://share.cisco.com/internet-of-things.html

Personal

Emerging

Sample App: Life Logging

Quantified Self App

Development Tasks

Sensor driver Device discovery Inference algorithms Parameter tuning

Structure data processing (e.g., cloud service *if needed*)

User mobility Device disconnections and *failure*

User interface and functionality

Existing Approaches

Monolithic

Device Abstractions

Existing Approaches

Development Tasks	Device Abstractio ns
	HomeOS, HomeSeer, Revolv,
Sensor driver Device discovery Inference algorithms Parameter tuning	✓
Structure data processing	
User mobility Device disconnections and failure	

Existing Approaches

Development Tasks	Device Abstractions	Mobile Sensing	Stream processing	Macro- programming
	HomeOS, HomeSeer, Revolv,	Kobe, Auditeur, Senergy, 	Semantic streams, Task cruncher	Sensorware, Kairos, Envirosuite,
Sensor driver Device discovery Inference algorithms Parameter tuning	✓	√ √	~	✓ ✓ ✓
Structure data processing		~		
User mobility Device disconnections and failure			~ donotoo	partial fulfillment

~ denotes partial fulfillment

Insight

Ease app development by *decoupling* **apps** and **devices** using an inference framework

Арр

Subscribe(PhysicalActivity, params)

Framework performs device and algorithm selection

Decouple Inferences, Apps, and Devices

Monolithic

Device Abstractions

Beam Inference Framework

- Apps receive typed inferences
 - (*timestamp*, *state info*, *error*) tuple
 - E.g., ('2015-01-01 10:10:11', 'walking', 0.95)

Inference graph

- Adapters
- Inference modules
- Channels
 - Local, remote
 - Supports disconnections
 - Delivery optimizations

Advantages of Decoupling

- Ease of development
- Support for *heterogeneous* deployments
- Sharing inferences (and resources) across apps
- Improved inference accuracy by combining sensors

11

Inference Graph for Quantified Self

Where should Inference Modules run?

Which devices should be selected?

Beam Design

Current Prototype

- Cross-platform portable service
 - .NET 4.5, Windows Store 8.1, Windows Phone 8.1

Adapters
PC event
Phone GPS
Accelerometer, FitBit
Energy meter
Camera
PC, tablet mic
HomeOS adapter

- Off-the-shelf algorithms: Batra '14, Brush '13, Hao '13, Mark '14, Reddy '10, ...
- Optimizations
 - Reactive, e.g., min #remote channels
 - Proactive, e.g., min remote data rate

Sample Apps

- Quantified self
- Rules (like IFTTT)
 - Alert if high-load *appliance on* and home not *occupied*

- Compared to monolithic approaches
 - Up to 3x increase in inference accuracy (user tracking)
 - Up to 12x reduction in developer effort (SLOC, #dev tasks)

Conclusion

- Apps today are built as *monolithic silos*
 - Requires handling several complexities
 - Device abstractions fall short
- *Inferences* as programming abstractions
- Beam inference framework
 - Unified view of inference logic across devices
 - Decouples, handles dynamics, optimizes resource use
 - Future work: optimizers, coverage trackers, managing error