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Popular Frameworks using GC
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Why Managed Languages?

THIS WEEK I ACHIEVED
UNPRECEDENTED LEVELS OF
UNVERIFIABLE PRODUCTIVITY.

Productivity Avoiding
(ains Bugs

‘nable Certain
Uptimizations




What IS the Cost of GC?

ISCA’12: Cao et al.

-

GC overhead workload and heap-size
dependent, 5-20% on single machine
In Distributed Applications, additional
overheads emerge. Applications run a-
cross independent runtime systems:

Runtime Runtime| |Runtime Runtime




Two Example Workloads
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Spark Runnmg PageRank

3-node cluster

PageRank on 56 GB
i Wikipedia web graph
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Spark Runmng PageRank

3-node cluster

< ‘ — Execution is divided
Into supersteps

11



Spark Runmng PageRank
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Spark Running PageRank
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Spark Runnmg PageRank
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Impact on Superstep Times

Nodes perform GC in
N different supersteps

White = No GC during superstep
Dark = One or more GCs (the darker the more GCs)
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|dea: Coordinate GC on different nodes

Trigger collection on all nodes at the
when any one reaches a threshold
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Impact of STWE Policy

Nodes perform GG in
same supersteps

?%ﬁHHHHHHHHHWHHHIHHHHHHHHHHIHHHHG

Overall improvement in

execution time (~15%)

ﬂﬂﬂ ﬂﬂﬂsﬂﬂoﬂlﬂﬂﬂlHHHHHHHHHHHHHHH Before

415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ppppppppp ]9




cassandra



YCSB
Workload

Generator

Cassandra with YCSB
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4-node Cassandra Cluster
3-way replicated
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uests sent to arbitrary
e becomes coordinator
contacts replicas to

assemble quorum.
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Query Latencies over Time
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Query Latenmes over Time
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Sources of Stragglers

1. Coordinatorincurs GC during request
2.Node required a quorum incurs GC
3.Non-GC reasons (e.g., anti-entropy)
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GC-aware Work Distribution

Steer client requests to Cassandra
nodes, avoiding ones that will need a
minor collection soon
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Steering Cassandra Requests

Monitor memory
on all nodes

YCSB
Workload

Generator

If one node is close to GC,
send to other nodes instead

2]



Steering Cassandra Requests

Monitor memory
on all nodes

YCSB
Workload

Generator

>30% full

If one node is close to GC,
send to other nodes instead
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Steering Cassandra Requests

Monitor memory
on all nodes
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If one node is close to GC,
send to other nodes instead
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Cumulative time

Impact of Request Steering

Reads | Updates

Response time histogram Response time histogram

100.00% 100.00%
99.50%| 1 99.50%}
99.00%| 1 99.00%}|
(]
98.00%}- £ 98.00%}
(0]
>
®
97.00%| g 97.00%|
3
96.00%] 1 96.00%
9500% i ! ! | ! ! L L L 9500% | | | ! I ! ! !
025 05 1 2 4 8 16 32 64 128 025 0.5 1 2 4 8 16 32 64 128
Operation time (ms) Operation time (ms)

B ue - WithOUt S’[eering 99.9 percentile: 3.3 ms->16ms
Red - with Steering Worstcase: 83 ms-> 19 ms 2




Are These Problems Common?

An Archaechure for Welk Canatonaed,
sternet § o

SOSP 01, Welsh et al.

GC problems

Have existed since dawn of
warehouse-scale computing
Current in
both industry and academia

(6 new papers in last 4 mo.)
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Common Solutions

X Lose language - X Performance
X Substantial -

advantages, lack effort to adopt overheads, still
of generality have pauses

Rewriteat  Respondto  Concurrent
lowerlevel  GC Pauses Collectors






The problem is not GC, it is
language runtime system coordination
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Current Approach

Language Runtime Systems are
completely independent (not just GC)
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Current Approach

Language Runtime Systems are
completely independent (not just GC)
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Runtime || Runtime
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Current Approach

Language Runtime Systems are
completely independent (not just GC)
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Current Approach

Language Runtime Systems are
completely independent (not just GC)

Redundancy

--
Intra-node  |[aunme | munme | [a Hth- Lack of

Interference [ commodiyos [ commodivos ] Coordination
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Current Approach

Language Runtime Systems are
completely independent (not just GC)

Flasticity Redundancy
Aop [ Aop | App ||| App#3 || App#4 |
|ntra-n0de - RT || RT || Runtime || Runtime LaCk Of

Interference [ commodiyos [ commodivos ] Coordination
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Holistic Runtime Systems

Apply the Distributed OS Ideas to design
a Distributed Language Runtime System

Cluster Scheduler

Runtime || Runtime Runtime || Runtime
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Holistic Runtime Systems

Apply the Distributed OS Ideas to design
a Distributed Language Runtime System

Cluster Scheduler
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Our Prototype

« Coordinated runtime decisions using
a feedback loop with dist. consensus

» Configured by Policy (writtenin DSL)
- Drop-in replacement for Java VM
- No modifying of application required
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Holistic Runtime System

System Design

Application Node O
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Application Node 1

Hotspot JVM

Hotspot JVM
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Why This Approach?

- Fasy to adopt (just pick policy, almost

no configuration required)

«  Minimally invasive to runtime system
- Expressive (can express a large range

of GC coordination policies)
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Our plan is to make the system available
as open source
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Would you use it?
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Thank you! Any Questions?

Martin Maas, Tim Harris, Krste Asanovic, John Kubiatowicz

{maas krste kubitron}@eecs.herkeley.edu timothy.|.harris@oracle.com

Work started while at Oracle Labs, Cambridge.



