TRASH DAY: COORDINATING GARBAGE
COLLECTION IN DISTRIBUTED SYSTEMS

Martin Maas** Tim Harris" Krste Asanovic* John Kubiatowicz*
*University of California, Berkeley ' Oracle Labs, Cambridge

JIN\SPIRE ORACLE

Most Popular Languages 2015

b out of the

2015 use Ga
= |Collection (G

top
languages popu
Dage

)

M

D

arin

Popular Frameworks using GC
' T Asterix> SHARK

eeeeeeee

ETEF’?U G l,—] cassandra

Why Managed Languages?

THIS WEEK I ACHIEVED
UNPRECEDENTED LEVELS OF
UNVERIFIABLE PRODUCTIVITY.

Productivity Avoiding
(ains Bugs

‘nable Certain
Uptimizations

What IS the Cost of GC?

ISCA’12: Cao et al.

-

GC overhead workload and heap-size
dependent, 5-20% on single machine
In Distributed Applications, additional
overheads emerge. Applications run a-
cross independent runtime systems:

Runtime Runtime| |Runtime Runtime

Two Example Workloads

& o

Spo
cassandra

Throughput-oriented Latency-sensitive
Batch-style Interactive

Spark Runnmg PageRank

3-node cluster

PageRank on 56 GB
i Wikipedia web graph

10

Spark Runmng PageRank

3-node cluster

< ‘ — Execution is divided
Into supersteps

11

Spark Runmng PageRank

0 [(|

N

M

|

I

I

| independent tasks

Time (s)

3-node cluster

Fxecution is divided
Into supersteps

Each superstep runs

12

Spar

kR

Node 1

unning PageRank

35
1 N

M

M

|

N

|

|

|

Time (s)

Red - Synchronization
at end of superstep

13

Spark Running PageRank

0 [(|

M

|

|

|

Red - Synchronization

|

at end of superst

M

Time (s)

Green - Major G

~ from completing

ep

5 Pause

i GC prevents superstep

14

Spark Runnmg PageRank

T

' Execution stalls due to

';00 350 e (@ 400 45(;1‘ 500 GC On Other n(]de

Impact on Superstep Times

Nodes perform GC in
N different supersteps

White = No GC during superstep
Dark = One or more GCs (the darker the more GCs)

S A

16

|dea: Coordinate GC on different nodes

Trigger collection on all nodes at the
when any one reaches a threshold

11

Percent full

Memory Occu

100

pancy over Time

80}

60F

a0}

20

Old generation size
T T LT TTT

— Node 0
— Node 1

e

Node 3
— Node 4
Node 5

— Node 7

— Node 2|

— Node 6]

LT

200 300 400
Time in seconds

Wlthou’[STWE

500

Percent full

100

80}

60}

40}

20

Old

generation size
T T T

200 250 400 450
me in seconds

) STWE

18

Impact of STWE Policy

Nodes perform GG in
same supersteps

?%ﬁHHHHHHHHHWHHHIHHHHHHHHHHIHHHHG

Overall improvement in

execution time (~15%)

ﬂﬂﬂ ﬂﬂﬂsﬂﬂoﬂlﬂﬂﬂlHHHHHHHHHHHHHHH Before

415 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
ppppppppp]9

cassandra

YCSB
Workload

Generator

Cassandra with YCSB

7
-

4-node Cassandra Cluster
3-way replicated

Rec
noc

dne

uests sent to arbitrary
e becomes coordinator
contacts replicas to

assemble quorum.

21

Query Latencies over Time

00000

00000

Ca

ﬂﬂﬂﬂﬂﬂ

Blue - mean latency

' over a10ms window

Grey Bars - minor GO on

| any node in the cluster

22

Query Latenmes over Time

rrrrrrrrrrrrrrrrrrrrrrrrrrr

' Blue - mean Iatency
- over a10ms window

3 2500

3
00000

' Grey Bars - minor GG on
L. any node in the cluster

1000
500
*. | Ill 1[N N . I A
Ty ™T 2 o
0 . ‘
60 80 100 120

Time (s)

Bx

Sources of Stragglers

1. Coordinatorincurs GC during request
2.Node required a quorum incurs GC
3.Non-GC reasons (e.g., anti-entropy)

24

Sources of Stragglers

1. Coordinatorincurs GC during request
2.Node required a quorum incurs GC
3.Non-GC reasons (e.g., anti-entropy)

25

GC-aware Work Distribution

Steer client requests to Cassandra
nodes, avoiding ones that will need a
minor collection soon

26

Steering Cassandra Requests

Monitor memory
on all nodes

YCSB
Workload

Generator

If one node is close to GC,
send to other nodes instead

2]

Steering Cassandra Requests

Monitor memory
on all nodes

YCSB
Workload

Generator

>30% full

If one node is close to GC,
send to other nodes instead

28

Steering Cassandra Requests

Monitor memory
on all nodes

YCSB
Workload

Generator

>30% full

If one node is close to GC,
send to other nodes instead

29

Cumulative time

Impact of Request Steering

Reads | Updates

Response time histogram Response time histogram

100.00% 100.00%
99.50%| 1 99.50%}
99.00%| 1 99.00%}|
(]
98.00%}- £ 98.00%}
(0]
>
®
97.00%| g 97.00%|
3
96.00%] 1 96.00%
9500% i ! ! | ! ! L L L 9500% | | | ! I ! ! !
025 05 1 2 4 8 16 32 64 128 025 0.5 1 2 4 8 16 32 64 128
Operation time (ms) Operation time (ms)

B ue - WithOUt S’[eering 99.9 percentile: 3.3 ms->16ms
Red - with Steering Worstcase: 83 ms-> 19 ms 2

Are These Problems Common?

An Archaechure for Welk Canatonaed,
sternet § o

SOSP 01, Welsh et al.

GC problems

Have existed since dawn of
warehouse-scale computing
Current in
both industry and academia

(6 new papers in last 4 mo.)
31

Common Solutions

X Lose language - X Performance
X Substantial -

advantages, lack effort to adopt overheads, still
of generality have pauses

Rewriteat Respondto Concurrent
lowerlevel GC Pauses Collectors

The problem is not GC, it is
language runtime system coordination

34

Current Approach

Language Runtime Systems are
completely independent (not just GC)

omrr [ponse | [A | moors

Runtime || Runtime Runtime || Runtime

Commodity OS Commaodity OS

Current Approach

Language Runtime Systems are
completely independent (not just GC)

| App#3 || App#4 |

Runtime || Runtime

Intra-node [Runiime {fRunsime
Interference |

Commodity OS

Current Approach

Language Runtime Systems are
completely independent (not just GC)

| App#1 || App#2 || App#3 || App#4 |
|ntra-n0de Runtime Runtime‘%gRuntime Runtime LaCk Of

Interference [commodivos || [~ commocivos | ([0 0rclination
3/

Current Approach

Language Runtime Systems are
completely independent (not just GC)

Redundancy

--
Intra-node |[aunme | munme | [a Hth- Lack of

Interference [commodiyos [commodivos] Coordination
38

Current Approach

Language Runtime Systems are
completely independent (not just GC)

Flasticity Redundancy
Aop [Aop | App ||| App#3 || App#4 |
|ntra-n0de - RT || RT || Runtime || Runtime LaCk Of

Interference [commodiyos [commodivos] Coordination
39

Holistic Runtime Systems

Apply the Distributed OS Ideas to design
a Distributed Language Runtime System

Cluster Scheduler

Runtime || Runtime Runtime || Runtime

40

Holistic Runtime Systems

Apply the Distributed OS Ideas to design
a Distributed Language Runtime System

Cluster Scheduler

41

Our Prototype

« Coordinated runtime decisions using
a feedback loop with dist. consensus

» Configured by Policy (writtenin DSL)
- Drop-in replacement for Java VM
- No modifying of application required

42

Holistic Runtime System

System Design

Application Node O

=)

Application Node 1

Hotspot JVM

Hotspot JVM

43

Why This Approach?

- Fasy to adopt (just pick policy, almost

no configuration required)

« Minimally invasive to runtime system
- Expressive (can express a large range

of GC coordination policies)

44

Our plan is to make the system available
as open source

45

Would you use it?

46

Thank you! Any Questions?

Martin Maas, Tim Harris, Krste Asanovic, John Kubiatowicz

{maas krste kubitron}@eecs.herkeley.edu timothy.|.harris@oracle.com

Work started while at Oracle Labs, Cambridge.

