
TRASH DAY: COORDINATING GARBAGE
COLLECTION IN DISTRIBUTED SYSTEMS

Martin Maas* † Tim Harris† Krste Asanovic* John Kubiatowicz*
*University of California, Berkeley † Oracle Labs, Cambridge

TRASH DAY: COORDINATING GARBAGE
COLLECTION IN DISTRIBUTED SYSTEMS

Martin Maas* † Tim Harris† Krste Asanovic* John Kubiatowicz*
*University of California, Berkeley † Oracle Labs, Cambridge

Why you should care
about GARBAGE

COLLECTION in Data
Center Applications

Most Popular Languages 2015

3

5 out of the top 6
languages popular in
2015 use Garbage
Collection (GC)

Popular Frameworks using GC

4

GC used by Cloud Companies

5

Why Managed Languages?

Productivity
Gains

Avoiding
Bugs

Enable Certain
Optimizations

6

[Targeting* Dynamic*Compilation*for* Embedded*Environments ,* Michael*Chen*and*Kunle Olukotun,*JVM’02]

What is the Cost of GC?

7

• GC overhead workload and heap-size
dependent, 5-20% on single machine

• In Distributed Applications, additional
overheads emerge. Applications run a-
cross independent runtime systems:

ISCA’12: Cao et al.

Node #3 Node #4

RuntimeRuntime

Node #1 Node #2

RuntimeRuntime

Two Example Workloads

Throughput-oriented
Batch-style

Latency-sensitive
Interactive

8

9

Spark Running PageRank

10

PageRank on 56 GB
Wikipedia web graph

8-node cluster

Spark Running PageRank

11

Execution is divided
into supersteps

8-node cluster

Spark Running PageRank

12

Execution is divided
into supersteps
Each superstep runs
independent tasks

8-node cluster

Spark Running PageRank

13

Red – Synchronization
at end of superstep

Spark Running PageRank

14

Green – Major GC Pause

Red – Synchronization
at end of superstep

GC prevents superstep
from completing

Spark Running PageRank

15

Execution stalls due to
GC on other node

Different node

Impact on Superstep Times

White = No GC during superstep
Dark = One or more GCs (the darker the more GCs)

Nodes perform GC in
different supersteps

16

Idea: Coordinate GC on different nodes

Trigger collection on all nodes at the
when any one reaches a threshold

Policy: Stop-the-world Everywhere, STWE

17

Memory Occupancy over Time

Without STWE With STWE 18

Before

Impact of STWE Policy
Nodes perform GC in
same supersteps

19

Overall improvement in
execution time (~15%)

20

YCSB
Workload
Generator

Cassandra with YCSB
4-node Cassandra Cluster
3-way replicated

Requests sent to arbitrary
node; becomes coordinator
and contacts replicas to
assemble quorum.

21

Blue – mean latency
over a 10ms window

Grey Bars – minor GC on
any node in the cluster

Query Latencies over Time

22

Blue – mean latency
over a 10ms window

Grey Bars – minor GC on
any node in the cluster

Query Latencies over Time

23

1. Coordinator incurs GC during request
2.Node required a quorum incurs GC
3.Non-GC reasons (e.g., anti-entropy)

Sources of Stragglers

24

1. Coordinator incurs GC during request
2.Node required a quorum incurs GC
3.Non-GC reasons (e.g., anti-entropy)

Sources of Stragglers

25

GC-aware Work Distribution
Steer client requests to Cassandra

nodes, avoiding ones that will need a
minor collection soon
Policy: Request Steering, STEER

26

YCSB
Workload
Generator

Steering Cassandra Requests

Monitor memory
on all nodes

If one node is close to GC,
send to other nodes instead

27

YCSB
Workload
Generator

Steering Cassandra Requests

Monitor memory
on all nodes

If one node is close to GC,
send to other nodes instead>80% full

28

YCSB
Workload
Generator

Steering Cassandra Requests

Monitor memory
on all nodes

If one node is close to GC,
send to other nodes instead>80% full

29

Blue – without steering
Red – with steering

Impact of Request Steering
Reads Updates

30

99.9 percentile: 3.3 ms -> 1.6 ms
Worst case: 83 ms -> 19 ms

Are These Problems Common?

31

• GC problems affect a large
number of applications

• Have existed since dawn of
warehouse-scale computing

• Current surge of interest in
both industry and academia
(6 new papers in last 4 mo.)

SOSP ’01, Welsh et al.

Common Solutions

Rewrite at
lower level

Respond to
GC Pauses

Concurrent
Collectors

32

Cinnober on: GC pause-free Java applications
through orchestrated memory management

Cinnober’s latest innovation captures the best of
two worlds in a single state-of-the-art solution:
a functionality-rich trading system with
consistently low latency.

Predictable low
latency

Transaction flow example
1. Incoming transaction

A request is received by the primary node’s Ultra commu-
nication framework, providing pause-free processing. The
transaction is assigned a sequence number and sent to the
primary and standby servers for execution.

2. Primary request handling

A shared memory transport mechanism sends the transac-
tion to the primary server. Expected latency for shared mem-
ory communication is on the order of 300 nanoseconds.

3. Standby request handling

The incoming transaction is replicated to the correspond-
ing communication framework process on the standby
side using RDMA (Remote Direct Memory Access) and from
there to the standby execution server using shared memory
transport. Expected latency for RDMA communication is on
the order of 2-3 microseconds, depending on message size.

The communication framework sends an acknowledge-
ment message back to the primary node to verify that the
standby has received it.

4. Business logic, responses and broadcasts

The primary and standby servers both execute the request
in parallel and provide identical transaction responses and
broadcasts. The responses are sent via the shared memory
transport to the Ultra communication framework. The
standby side sends the response to the primary side’s Ultra
communication framework, again using RDMA communica-
tion.

5. Primary response handling

The primary side sends out the response as soon as it is
received from either the primary or the standby, whichever
arrives first.

This is the key to allowing orchestrated JVM pauses in the
primary and standby servers.

Orchestration of JVM pauses
The Ultra communication framework handles the orches-
tration of JVM pauses.

Since the primary and standby servers execute the same
code with essentially the same memory turnover behavior,
the orchestration mechanism does not need to be overly
complex. Measuring memory turnover at maximum trans-
action load, the orchestrator only needs to keep track of
current memory usage and calculate when a garbage col-
lection should occur. The initial garbage collection for one of
the servers is requested so that future garbage collections
will occur with optimal time spacing.

Next step
Cinnober will publish an extensive white paper about or-
chestrated memory management in TRADExpress in con-
junction with the coming version release that is scheduled
for the second quarter of 2014.

• Rewrite in C/C++
• Use non-idiomatic

language constructs

✘ Lose language
advantages, lack

of generality
✘ Substantial
effort to adopt

✘ Performance
overheads, still

have pauses

Common Solutions

Rewrite at
lower level

Respond to
GC Pauses

Concurrent
collectors

33

Cinnober on: GC pause-free Java applications
through orchestrated memory management

Cinnober’s latest innovation captures the best of
two worlds in a single state-of-the-art solution:
a functionality-rich trading system with
consistently low latency.

Predictable low
latency

Transaction flow example
1. Incoming transaction

A request is received by the primary node’s Ultra commu-
nication framework, providing pause-free processing. The
transaction is assigned a sequence number and sent to the
primary and standby servers for execution.

2. Primary request handling

A shared memory transport mechanism sends the transac-
tion to the primary server. Expected latency for shared mem-
ory communication is on the order of 300 nanoseconds.

3. Standby request handling

The incoming transaction is replicated to the correspond-
ing communication framework process on the standby
side using RDMA (Remote Direct Memory Access) and from
there to the standby execution server using shared memory
transport. Expected latency for RDMA communication is on
the order of 2-3 microseconds, depending on message size.

The communication framework sends an acknowledge-
ment message back to the primary node to verify that the
standby has received it.

4. Business logic, responses and broadcasts

The primary and standby servers both execute the request
in parallel and provide identical transaction responses and
broadcasts. The responses are sent via the shared memory
transport to the Ultra communication framework. The
standby side sends the response to the primary side’s Ultra
communication framework, again using RDMA communica-
tion.

5. Primary response handling

The primary side sends out the response as soon as it is
received from either the primary or the standby, whichever
arrives first.

This is the key to allowing orchestrated JVM pauses in the
primary and standby servers.

Orchestration of JVM pauses
The Ultra communication framework handles the orches-
tration of JVM pauses.

Since the primary and standby servers execute the same
code with essentially the same memory turnover behavior,
the orchestration mechanism does not need to be overly
complex. Measuring memory turnover at maximum trans-
action load, the orchestrator only needs to keep track of
current memory usage and calculate when a garbage col-
lection should occur. The initial garbage collection for one of
the servers is requested so that future garbage collections
will occur with optimal time spacing.

Next step
Cinnober will publish an extensive white paper about or-
chestrated memory management in TRADExpress in con-
junction with the coming version release that is scheduled
for the second quarter of 2014.

• Rewrite in C/C++
• Use non-idiomatic

language constructs

✘ Lose language
advantages

✘ Substantial
effort to adopt

✘ Performance
Overheads

No general, widely
adopted solution!

The problem is not GC, it is
language runtime system coordination

34

Current Approach
Language Runtime Systems are

completely independent (not just GC)
Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

App #1

Commodity OS

App #2

RuntimeRuntime

35

Current Approach

Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

App #1

Commodity OS

App #2

RuntimeRuntimeIntra-node
Interference

Language Runtime Systems are
completely independent (not just GC)

36

Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

App #1

Commodity OS

App #2

RuntimeRuntimeIntra-node
Interference

Lack of
Coordination

Current Approach

37

Language Runtime Systems are
completely independent (not just GC)

Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

App #1

Commodity OS

App #2

RuntimeRuntimeIntra-node
Interference

Lack of
Coordination

Redundancy
JIT JIT

Current Approach

38

Language Runtime Systems are
completely independent (not just GC)

Cluster Scheduler

App #3

Commodity OS

App #4

RuntimeRuntime

Commodity OS

App

RTIntra-node
Interference

Lack of
Coordination

RedundancyElasticity
App

RT

App

RT

Current Approach

39

Language Runtime Systems are
completely independent (not just GC)

Holistic Runtime Systems
Apply the Distributed OS Ideas to design
a Distributed Language Runtime System

Cluster Scheduler

App #3 App #4

RuntimeRuntime

App #1 App #2

RuntimeRuntime

40

Holistic Runtime Systems
Apply the Distributed OS Ideas to design
a Distributed Language Runtime System

Cluster Scheduler

App #3 App #4App #1 App #2

41

Distributed Runtime Holistic
Runtime
SystemRuntimeRuntimeRuntimeRuntime

Our Prototype
• Coordinated runtime decisions using

a feedback loop with dist. consensus
• Configured by Policy (written in DSL)
• Drop-in replacement for Java VM
• No modifying of application required

42

System Design

Hotspot JVM Hotspot JVM

Application Node 0 Application Node 1

Me
mo

ry-
Oc

cu
pa

nc
y,

Sta
te

Plan,
Reconfiguration,
State updates

User-supplied
Policy

Ho
lis

tic
 Ru

nt
im

e S
ys

te
m

Monitor Monitor

State State

43

Why This Approach?
• Easy to adopt (just pick policy, almost

no configuration required)
• Minimally invasive to runtime system
• Expressive (can express a large range

of GC coordination policies)
44

Our plan is to make the system available
as open source

45

Would you use it?

46

Thank you! Any Questions?

Martin Maas, Tim Harris, Krste Asanovic, John Kubiatowicz
{maas,krste,kubitron}@eecs.berkeley.edu timothy.l.harris@oracle.com

Work started while at Oracle Labs, Cambridge.

