
FlexNIC: Rethinking Network
DMA

Antoine Kaufmann Simon Peter
Tom Anderson Arvind Krishnamurthy

University of Washington

HotOS 2015



Networks: Fast and Growing Faster

100 M

1 G

10 G

100 G

1 T

 1995  2000  2005  2010  2015  2020

E
th

e
rn

e
t 

B
a
n
d
w

id
th

 [
b
it

s/
s]

Year

100 MbE

1 GbE

10 GbE

40 GbE

100 GbE

400 GbE

I 5ns inter-arrival time for 64B packets at 100Gbps



Software needs to catch up

I Many cloud apps dominated by packet processing
I Key-value stores, graph analytics, load balancers

I Redis on Arrakis with kernel-bypass: 4µs
I Still a long way to go to 5ns

I 5ns is not a lot of time
I Cache access: 15ns for L3, 40ns if dirty in other L1

I Careful memory system use is paramount
I Ideal: Data always in L1/L2 cache



Software needs to catch up

I Many cloud apps dominated by packet processing
I Key-value stores, graph analytics, load balancers

I Redis on Arrakis with kernel-bypass: 4µs
I Still a long way to go to 5ns

I 5ns is not a lot of time
I Cache access: 15ns for L3, 40ns if dirty in other L1

I Careful memory system use is paramount
I Ideal: Data always in L1/L2 cache



Software needs to catch up

I Many cloud apps dominated by packet processing
I Key-value stores, graph analytics, load balancers

I Redis on Arrakis with kernel-bypass: 4µs
I Still a long way to go to 5ns

I 5ns is not a lot of time
I Cache access: 15ns for L3, 40ns if dirty in other L1

I Careful memory system use is paramount
I Ideal: Data always in L1/L2 cache



Software needs to catch up

I Many cloud apps dominated by packet processing
I Key-value stores, graph analytics, load balancers

I Redis on Arrakis with kernel-bypass: 4µs
I Still a long way to go to 5ns

I 5ns is not a lot of time
I Cache access: 15ns for L3, 40ns if dirty in other L1

I Careful memory system use is paramount
I Ideal: Data always in L1/L2 cache



NIC & SW are not well integrated

I Poor cache locality, extra synchronization
I NIC steers packets to cores by connection
I Application locality may not match connection

I Wasted CPU cycles
I Packet parsing repeated in software

I High memory system pressure
I Packet formatted for network, not SW access
I High packet processing overhead



Our Proposal: FlexNIC
I Flexible NIC DMA interface

I Applications insert packet matching rules
I Rules control DMA actions

I Use multi-stage match+action (M+A) processing
I Similar to that found in next-generation SDN switches

I M+A is both efficient and a flexible abstraction
I Packet steering based on app-defined match
I App-level packet validation
I Customized packet transformations:

add/remove/modify header fields
I Can be stateful



Our Proposal: FlexNIC
I Flexible NIC DMA interface

I Applications insert packet matching rules
I Rules control DMA actions

I Use multi-stage match+action (M+A) processing
I Similar to that found in next-generation SDN switches

I M+A is both efficient and a flexible abstraction
I Packet steering based on app-defined match
I App-level packet validation
I Customized packet transformations:

add/remove/modify header fields
I Can be stateful



Our Proposal: FlexNIC
I Flexible NIC DMA interface

I Applications insert packet matching rules
I Rules control DMA actions

I Use multi-stage match+action (M+A) processing
I Similar to that found in next-generation SDN switches

I M+A is both efficient and a flexible abstraction
I Packet steering based on app-defined match
I App-level packet validation
I Customized packet transformations:

add/remove/modify header fields
I Can be stateful



Example: Key-Value Store
Receive-Side Scaling

Client 1

Client 2

Client 3

Client 1

Client 2

Client 3

NIC
Core 1

Core 2

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Match:
IF protocol = memcached

Action:
PUT packet TO hash(key)

I Lock contention
I Poor cache utilization

I No locks needed
I Better cache utilization

Hash
Table

3,4,7

1,4,7,8

1,3,4

7,8



Example: Key-Value Store
Receive-Side Scaling

Client 1

Client 2

Client 3

Client 1

Client 2

Client 3

NIC
Core 1

Core 2

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Match:
IF protocol = memcached

Action:
PUT packet TO hash(key)

I Lock contention

I Poor cache utilization

I No locks needed
I Better cache utilization

Hash
Table

3,4,7

1,4,7,8

1,3,4

7,8



Example: Key-Value Store
Receive-Side Scaling

Client 1

Client 2

Client 3

Client 1

Client 2

Client 3

NIC
Core 1

Core 2

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Match:
IF protocol = memcached

Action:
PUT packet TO hash(key)

I Lock contention
I Poor cache utilization

I No locks needed
I Better cache utilization

Hash
Table

3,4,7

1,4,7,8

1,3,4

7,8



FlexNIC Steering

Receive-Side Scaling

Client 1

Client 2

Client 3

Client 1

Client 2

Client 3

NIC
Core 1

Core 2

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Match:
IF protocol = memcached

Action:
PUT packet TO hash(key)

I Key-based steering

I No locks needed
I Better cache utilization

Hash
Table

3,4,7

1,4,7,8

1,3,4

7,8



FlexNIC Steering

Receive-Side Scaling

Client 1

Client 2

Client 3

Client 1

Client 2

Client 3

NIC
Core 1

Core 2

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Match:
IF protocol = memcached

Action:
PUT packet TO hash(key)

I Key-based steering
I No locks needed

I Better cache utilization

Hash
Table

3,4,7

1,4,7,8

1,3,4

7,8



FlexNIC Steering

Receive-Side Scaling

Client 1

Client 2

Client 3

Client 1

Client 2

Client 3

NIC
Core 1

Core 2

1
2
3
4
5
6
7
8

1
2
3
4
5
6
7
8

Match:
IF protocol = memcached

Action:
PUT packet TO hash(key)

I Key-based steering
I No locks needed
I Better cache utilization

Hash
Table

3,4,7

1,4,7,8

1,3,4

7,8



Traditional NIC DMA

Buffers

Descriptor Queue

* * * *

I Many PCIe round-trips

I Key-Value Store: Copy items to item log



Traditional NIC DMA

Buffers

Descriptor Queue
* * *

*

I Many PCIe round-trips

I Key-Value Store: Copy items to item log



Traditional NIC DMA

Buffers

Descriptor Queue

*

* *

*

I Many PCIe round-trips

I Key-Value Store: Copy items to item log



Traditional NIC DMA

Buffers

Descriptor Queue

* *

*

*

I Many PCIe round-trips

I Key-Value Store: Copy items to item log



Traditional NIC DMA

Buffers

Descriptor Queue

* *

* *

I Many PCIe round-trips

I Key-Value Store: Copy items to item log



Traditional NIC DMA

Buffers

Descriptor Queue

* *

* *

I Many PCIe round-trips

I Key-Value Store: Copy items to item log



Traditional NIC DMA

Buffers

Descriptor Queue

* *

* *

I Many PCIe round-trips

I Key-Value Store: Copy items to item log



FlexNIC Key-Value Store
Custom DMA interface

Item Log

Event Queue

Item 1

Item 2

S2

SET, Client ID, Item Pointer

G1

GET, Client ID, Hash, Key

I Combine steering, validation, and transformation



FlexNIC Key-Value Store
Custom DMA interface

Item Log

Event Queue

Item 1 Item 2

S2

SET, Client ID, Item Pointer

G1

GET, Client ID, Hash, Key

I Combine steering, validation, and transformation



FlexNIC Key-Value Store
Custom DMA interface

Item Log

Event Queue

Item 1 Item 2

S2

SET, Client ID, Item Pointer

G1

GET, Client ID, Hash, Key

I Combine steering, validation, and transformation



FlexNIC Key-Value Store
Custom DMA interface

Item Log

Event Queue

Item 1 Item 2

S2

SET, Client ID, Item Pointer

G1

GET, Client ID, Hash, Key

I Combine steering, validation, and transformation



FlexNIC Key-Value Store
Custom DMA interface

Item Log

Event Queue

Item 1 Item 2

S2

SET, Client ID, Item Pointer

G1

GET, Client ID, Hash, Key

I Combine steering, validation, and transformation



Preliminary Evaluation

I Lightweight key-value store implementation

I 4 core Sandy Bridge 2.2GHz

I Receive-side scaling: 1110 cycles/req
I Key-based steering: 690 cycles/req (38%

speedup)
I Emulate using RSS and IPv6 header

I FlexNIC KVS: 450 cycles/req (60% speedup)
I Emulate in software on dedicated core



Summary

I Networks are becoming faster
I Server applications need to keep up

I FlexNIC eliminates processing inefficiencies
I Application control over where packets are processed
I Efficient steering/validation/transformation on NIC

I Promising preliminary performance evaluation
I Reduce request processing time by 60%

I Next step: evaluate more use-cases, delivery
directly to cache



Backup



Further Use-case: Improving RDMA

I RDMA requires shared memory to be pinned
I Problematic for virtualization
I Usually mapped, but need to gracefully handle if not
I Idea: Add rule to divert access to slow-path

I Data structure consistency with RDMA is hard
I Often need to use messages
I Idea: Implement data structure operations (e.g. log

append, hash table insert)


